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Abstract

The Interpretation of Motionally Induced Electric Fields
in Oceans of Complex Geometry

Zoltan B. Szuts

Chair of the Supervisory Committee:
Professor Thomas B. Sanford

School of Oceanography

Sea water moving through the earth’s magnetic field induces electric currents in the ocean,

and in general their distribution depends on the 3D structure of the ocean and its sur-

roundings. Although velocity is traditionally calculated from measurements of the electric

field with a one-dimensional relationship in the vertical, higher dimension processes are

expected near steep topography or in energetic and variable flows. The observational capa-

bilities of recently developed electric field instruments highlight the need for a qualitative

and quantitative assessment of higher dimensional processes.

The first part of this dissertation analyzes electric field solutions for 2D effects caused

by horizontal gradients of either velocity or topography. Magnetostatic solutions are

calculated for simple geometries that are described by a few non-dimensional spatial scales.

The solution depends most strongly on the aspect ratio of the flow, that is the ratio of

water depth H to velocity width-scale L or topographic width-scale Lt. Aspect ratios are

expected to be less than 0.1 for a variety of realistic flows and topography. For aspect

ratios less than 0.1 and sediment less thick than the water column, the velocity errors

caused by velocity gradients are < 2% of the 1D approximation, while velocity errors

caused by sloping topography are < 0.5%.

The second part analyzes measurements collected across the Gulf Stream where it

separates from the continental margin, where the oceanic flow is fast and meandering,





topographic is steep, and sediment is thick. Geophysical data are compiled to estimate

the sediment electrical properties. The observations of electric field at the 500 m isobath

are not fully described by the 1D approximation, therefor higher dimension effects were

investigated with a numerical model initialized with the observations. The discrepancy

at 500 m is explained by a maximum of the vertically averaged velocity on the upper

continental slope caused by meanders. Errors in the depth-varying velocity are less than

0.02 m s−1 and are corrected with an iterative method. The depth-uniform errors are less

than 0.005 m s−1 over most of the Gulf Stream, with larger errors on the upper continental

shelf cause by jets meandering over topography.
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Chapter 1

INTRODUCTION

The horizontal electric fields (HEF) that arise from the motion of seawater through

the earth’s magnetic field are a convenient way to indirectly measure ocean velocity. High

quality velocity observations have been collected during the past few decades that take

advantage of the benefits of HEF-based methods. The technique is ideal for rapid and

high-vertical resolution of the relative velocity from profiling floats, while stationary sen-

sors measure a quantity that is proportional to the vertically-averaged velocity and is

dynamically similar to oceanic transport. Theoretical understanding of electric fields is

based on nearly horizontal oceans, however, and potential higher order influences near

steep topography and ocean flows with small length-scales have not yet been examined.

This dissertation quantifies higher order influences on ocean electric fields through numer-

ical and analytical calculations and through a detailed interpretation of observations.

The first order theory that relates ocean velocity to the resulting electric fields depends

only on the vertical dimension. Stationary sensors measure a quantity proportional to the

vertically-averaged velocity, while profiling instruments measure a relative velocity profile.

As these quantities involve vertical variations and vertical averages of the velocity, this

first order approximation is considered one-dimensional.

Observations can be made from submarine cables, bottom-mounted sensors, vertical

profilers, and drifting or floating platforms, many of which are commercially available to

the oceanographic community. In many cases the electric field observations are the only

practical means for measuring the currents. For example, expendable current profilers

(XCP, Sanford et al., 1982, 1987) or HEF-equipped APEX floats (EM-APEX, Sanford

et al., 2007) are the only current profilers suitable for deployment by aircraft and can

also be deployed from ships under harsh conditions (e.g. Girton et al., 2001). Seafloor

cables can be used to monitor transport, an essential property for understanding ocean
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circulation. For instance, cable measurements of the Florida Current transport over 20

years (Larsen and Sanford , 1985; Baringer and Larsen, 2001) are important constraints on

models and observations of the North Atlantic meridional overturning circulation (Kanzow

et al., 2007). Two instruments have recently been developed as part of large-scale dis-

tributed sensor observing networks: the EM-APEX float, which adds velocity-measuring

capabilities to the ARGO network (Chen et al., 2007; Gille et al., 2007; Joyce et al., 2008,

manuscript submitted to Bull. Amer. Meteor. Soc.); and the bottom lander HPIES (Hor-

izontal electric field, Pressure and and Inverted Echo Sounder, Sanford, pers. comm.),

which is ideal for deployment with cabled seafloor observatories. With distributed sensors

there is higher likelihood for measuring in locations that are less than ideal from a theo-

retical perspective. Extending the theoretical understanding is essential for more accurate

analysis of observations and for improved experiment planning.

Though the theory of motional induction includes temporal and small spatial pertur-

bations of the flow field and topography (Sanford , 1971; Chave and Luther , 1990), the

higher order terms (HOT) have not been investigated in regions outside of where the the-

oretical assumption of small aspect ratio flows (the ratio of water depth to flow width) is

strictly valid. Larger HOT are expected for small velocity length-scales, steep topography,

thick sediments, or flow over topography. This dissertation investigates two-dimensional

and three dimensional HOT to gain a better understanding of the physical basis for higher

dimension effects in the electric field, with the ultimate goal of a more accurate conversion

from the measured electric field to the desired velocity.

Oceanographic Electromagnetics Initial development in oceanography occurred in

the mid 20th century with theoretical advances by Stommel (1948) and Longuet-Higgins

et al. (1954). Early interpretation of electric field observations was inexact (von Arx , 1950;

Wertheim, 1954). More sophisticated theories were developed later by Sanford (1971) for

a general and 3D interpretation of ocean velocity, and also by Filloux (1967) and Larsen

(1968) for tidal signals that are influenced by deep earth structure. Although there was

a greater theoretical basis for interpreting observations, the number of observations was

still very limited. Cable studies (Bowden, 1956; Hughes, 1969; Robinson, 1976) showed a
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strong ocean signal, but discrepancies with oceanic parameters could not be explained in

a satisfactory manner.

With increased effort measuring oceanic electromagnetic signals, there was increased

accuracy with cables (Larsen and Sanford , 1985; Baringer and Larsen, 2001; Kim et al.,

2004; Nilsson et al., 2007), profiling instruments (XCP, Sanford et al., 1982; AVP, Sanford

et al., 1985; HRP, Montgomery et al., in prep.), bottom electrodes and magnetometers

(Chave et al., 1989; Luther et al., 1991; Chave et al., 1997; Meinen et al., 2002, 2003),

and Lagrangian drifting instruments (Szuts, 2004; Sanford et al., 2007). Various aspects

of the theory has been further refined: Chave and Luther (1990) for a decomposition

with spherical functions, showing that 1D oceanic EFs are averaged horizontally in space;

Tyler and Mysak (1995a,b) for application to a global reference frame. The development of

sufficiently powerful computers has allowed to numerical modelling of the oceanic electric

and magnetic fields, either for oceanographic (Stephenson and Bryan, 1992; Flosadóttir

et al., 1997; Vivier et al., 2004) or geomagnetic studies (Tyler et al., 2003; Manoj et al.,

2006). For interpreting observations in terms of oceanic velocity, however, the formulation

based on a 1D approximation for oceans with large length scales is typically used.

Geophysical Electromagnetics In tandem with the development of the physical oc-

eanographic understanding of oceanic electric fields, there has been concurrent devel-

opments in geophysics that use variable frequency electromagnetic signals to probe the

earth’s conductivity structure or the upper atmosphere’s electromagnetic structures. The

non-stationary solar wind hitting the earth’s magnetosphere and ionosphere generates

time-varying electromagnetic signals. Planetary researchers are interested in these fields

in and of themselves, for they can create hazardous electric environments for satellites

and for ground-based communication and power networks. The fluctuating signals prop-

agate downward into the earth (and ocean) and are attenuated and distorted by geologic

features. Geologists can calculate the electric structure of the earth by inverting mea-

surements of the electric and magnetic fields. In the ocean high frequency ionospheric

signals are greatly reduced, but similar techniques using active electromagnetic sources

have gained wide-spread acceptance (Constable and Weiss, 2006).
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In recent years there is growing recognition that the ocean can generate magnetic

signals that are detectable by satellite or land-based magnetometers and that can obscure

the weak signals of interest to geophysicists (Heinson and Constable, 1992; Tyler et al.,

2003; Maus et al., 2006). The same electromagnetic signals that contain information

about ocean velocity also contain information about geologic and ionospheric processes.

The oceanic electric fields also depend on the seafloor electrical properties.

The overlap of oceanographic and geophysical electromagnetics can be utilized to ob-

tain a better estimate of the signal of interest, whether oceanic, geological, or magne-

tospheric. Techniques, results and data from these other fields are used in this study,

and demonstrate to the physical oceanographer interested in measuring ocean velocity

techniques less well known in oceanography.

Organization of Dissertation This dissertation investigates broadly the structure and

magnitude of oceanic electric fields in the presence of complexities of geometry. Horizontal

gradients of velocity and topography are examined in detail, and other higher order and

non-oceanic processes are also discussed.

The second chapter investigates HOT in simple geometries that are schematically rep-

resentative of oceanic flow. The roles of 2D velocity gradients and topographic gradients

are separated into different models that are then solved analytically and numerically. This

approach facilitates a non-dimensional analysis of the parameter space for the models.

The third chapter investigates observations collected off of Cape Hatteras across the

Gulf Stream. This region is an excellent test location because of the presence of a

strong and variable (meandering) Gulf Stream, steep topography, thick sediment, and

non-uniform sediment electric properties. Geophysical data are compiled to constrain the

electrical properties of the sediment, and a magnetotelluric analysis is done to estimate

the role of externally-induced signals. The observations are inconsistent with the standard

1D approximation that relates oceanic electric fields to velocity on the upper continental

shelf. To investigate this effect a numerical model calculates the electric fields at a higher

spatial resolution. In addition to describing the 2D effects in a plane perpendicular to the

Gulf Stream, 3D effects are estimated with a vertically integrated form for quantifying
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the effect of Gulf Stream transport crossing isobaths.

The overall results are discussed in the conclusion in the last chapter.
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Chapter 2

ELECTRIC FIELDS GENERATED BY HORIZONTAL GRADIENTS

2.1 Introduction

This chapter investigates electric fields and electric currents generated in two-dimensional

geometries that contain horizontal gradients of velocity and topography. The three ge-

ometries are representative of the realistic situations, of which two include horizontal

gradients of velocity and the third contains sloping topography. The small number of

spatial scales necessary to describe each geometry makes it feasible to find solutions over

the full parameter space. The electric field and electric current solutions are evaluated

based on the velocity error relative to a 1D interpretation of the 2D electric fields.

The first order theory is discussed in section 2.2, as is the general form of higher di-

mension terms. The solution for each geometry is calculated with a different technique

(section 2.3). The criteria for evaluating the solutions are the same for all geometries

(section 2.4.1), based on how much the solution differs from the first order (1D) theory.

Immediately following (sections 2.4.2–2.4.4) the differences in velocity between the exact

(2D) solution and the 1D approximation are discussed over the parameter space of the

geometries. In the discussion (section 2.5) the general perturbations from the 1D ap-

proximation are summarized (section 2.5.1), the results are extended for geometries not

directly evaluated with the three cases (section 2.5.3), and general geophysical limits on

the scalings for oceanic flow and topography are used to proscribe the unrealistic part of

the parameter space (section 2.5.4). The chapter finishes in section 2.6 with a summary

of the results.

2.2 Theory

Electric fields occur in the ocean because of the motion of conductive salt-water through

the earth’s magnetic field — this is generally called motional induction. The theory of
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motionally induced electric fields in the ocean for time-dependent and 3–D currents and

bathymetry was developed by Sanford (1971), where the thin aspect ratio of the ocean

allows for great simplification from the 3D governing equations. The theory of motional

induction is also treated by Larsen (1968, 1971), Chave and Luther (1990) and Tyler and

Mysak (1995b).

The principal electric currents generated by ocean currents fall into two modes. The

traditional and generally more important mode restricts currents to the vertical plane.

This is a toroidal mode that describes, for instance, electric currents in the surface layer

forced by surface flow with weaker electric currents returning in the motionless deep ocean.

For unidirectional velocity electric currents flow in the perpendicular plane. The second

mode, called poloidal, is characterized by electric fields that uniformly fill the water column

and are directed in the horizontal plane. This mode only exists in situations where there

are gradients in the downstream direction and thus is a 3D effect.

2.2.1 General Solution

Sanford (1971) solves for a general solution that makes use of a number of assumptions.

Although the analytic form of his solution is specific to the assumptions made, it suggests

the underlying physical factors that all formulations will contain. The assumptions he

made are: a horizontal ocean bottom (H) with small topographic perturbations (h, where

h/H � 1), width scales (L) much larger than bottom depth (H/L � 1), predominantly

horizontal oceanic velocity (v), distant lateral boundaries, a layer of underlying sediment

that has a uniform electrical conductivity, and small time variations so that magnetic

self-induction and mutual induction are negligible.

Although it is readily shown that time variations of the electric field generate induced

magnetic fields that are negligible compared to the earth’s magnetic field (Sanford , 1971;

Chave and Luther , 1990), a less evident process is inductive coupling between the ocean

and the conductive mantle. If large-scale water motion changes quickly in time (e.g. tidal

flow), the time variations induce electric currents in the mantle that act to reduce and delay

the oceanic electric field. Scaling Maxwell’s governing equations finds that the induction
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parameter µσωL2 must be much less than 1 for mutual induction to be negligible (µ is

magnetic permeability and σ is electrical conductivity) (Sanford , 1971). Although the

appropriate length scales L2 for this problem are unclear, they can range from the water

depth H to the velocity width-scale L to the depth of deep conductors in the earth. The

induction parameter depends on a combination of time-scales (frequency ω) and length

scales (L2). Generally, this condition is satisfied if the phase speed ω/L < 10 m s−1.

Analysis of a simplified earth geometry constrains large scale flow (H/L ≤ 1) to have

time-scales larger than 6 hours (Sanford , 1971). Inclusion of realistic earth conductivity

profiles (Chave and Luther , 1990) shows that mutual induction is minimal for periods

longer than 10 hours. To avoid complications caused by quickly varying large-scale flow,

we shall limit the analysis to oceanic flows with sub-tidal frequencies.

In general form, the quasi-static horizontal electric field Eh is

−Eh = ∇hφ = v × k̂Fz − Jh/σ , (2.1)

where ∇h is the horizontal gradient operator, φ is electric potential, v is oceanic velocity,

Fz is the vertical component of earth’s magnetic field, k̂ is the vertical unit vector (pointing

upward), σ is electrical conductivity, and Jh is horizontal electric current density. The

electromotive driving force is due to v × k̂Fz, which sets up an electric field and electric

currents.

For the purposes of this study, the form for horizontal electric current density divided

by conductivity is (Sanford , 1971)

Jh

σ
=

term 1, 1D︷ ︸︸ ︷
(v
↑
|

depth-varying

− v∗) × Fzk̂ + (2.2)

−∇h

{
1

H(1 + λ)

0∫
−H

k̂ · (v × F )z′ dz′ +

depth-varying︷ ︸︸ ︷
z∫

−H

k̂ · (v × F ) dz′
}

︸ ︷︷ ︸
term 2, J∇h
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with

r =
√

(x− x′)2 + (y − y′)2

D =H + ζ − h+
σs

σ
(Hs −H + h)

v∗ =
∫ ζ

−H+h
σv dz′

/∫ ζ

−Hs

σ dz′ , (2.3)

where ζ is the sea surface, −H is the mean depth of the seafloor, h is the perturbation

of the seafloor, −Hs is the bottom of conductive sediment, D is a scaled water depth, σs

is sediment conductivity, λ is the sediment conductance factor (D/H = 1 + λ), and v∗

is the conductivity-weighted vertically-averaged velocity. Terms that vary vertically have

been denoted so, and all other terms are depth-uniform. The scaled bottom depth D is

the depth of the water column plus a thickness of seawater that has the same vertical

conductance as the sediments. Another term that is the same order as term 2 (H/L) is

not included in (2.2) (see below and section 3.11), but otherwise the equation is accurate

to order H2/L2.

First Order Term

The first term of Jh/σ is the principal toroidal mode. For baroclinic flows the fastest part

of the water column generates the largest electromotive force through v(z)× k̂Fz. Due to

geophysical scaling, that the width L of the current is much larger than the depth H, the

resulting horizontal electric field is vertically uniform and is equal to v∗Fz. The electric

current density divided by σ is the difference between that driven by the vertically uniform

electric field and that generated by local horizontal water motion, (v(z) − v∗) × k̂Fz.

The toroidal term is considered one-dimensional because it only depends on the vertical

dimension: vertical variations of σ(v(z)−v∗) determine the electric current density, while

a vertical integral of velocity (2.3) defining v∗ determines the horizontal electric field v∗Fz.

In the limiting situation where the flow field is entirely barotropic and there is no sediment

layer, there will be no electric currents.

The quantity v∗ corresponds physically to the vertically-uniform horizontal electric

field divided by Fz and is called the vertically-averaged conductivity-weighted velocity.
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v∗ is linearly related to the vertically averaged velocity. If conductive sediment beneath

the ocean can support electric currents that act to reduce the oceanic electric potential.

In the 1D approximation, where only the toroidal term contributes to Jh/σ in (2.2), the

horizontal electric current integrated from the bottom of conductive sediment (−Hs) to

the top of the water column needs to be zero to conserve charge. This constraint yields

the equation that defines v∗, (2.3).

A simpler form of v∗ is obtained by reducing the numerator and denominator of (2.3)

to factors that describe physical processes. A Reynolds decomposition of the numerator

defines the vertical correlation factor γ

1
H − h+ ζ

ζ∫
−H+h

σv dz = σv = σ v + σ′v′ = σ v(1 + γ) , (2.4)

where x indicates a vertical average in the water column and x′ indicates the perturbations

about the vertical mean. Rearranging the denominator gives the bottom conductance

factor λ

λ =
∫ −H+h

−Hs

σ(z) dz
/∫ ζ

−H+h
σ(z) dz , (2.5)

the ratio of the sediment conductance to the water column conductance. Combining 2.4

and 2.5 yields a simplified form of v∗:

v∗ = v

(
1 + γ

1 + λ

)
. (2.6)

Another form of v∗ can obtained by defining the denominator of (2.3) as the total vertical

conductance Σ =
∫ ζ
−Hs

σ dz, as is often used when the ocean is approximated as a thin-

shell (e.g., Vivier et al., 2004).

The strongest factor is λ which describes the amount of shorting through the bottom

sediment. The form that is consistent with (2.2) is λ = σs(Hs − H + h)/σ(H + ζ −
h), which parameterizes the sediment layer as having a uniform apparent conductivity

σs and includes the small perturbations of the seafloor h and the surface ζ. For the

thin aspect ratio assumption, a vertically uniform electric field drives electric currents

through the sediment. In the presence of vertically-varying sediment conductivity, the

total conductance of the sediment (the numerator of (2.5)) is simply the vertical integral
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of conductivity. Sediment is electrically conductive mainly because the pores are filled

with seawater, making its bulk conductivity closely related to porosity. Porosity decreases

approximately exponentially with depth into the sediment. Despite these general trends,

sediment conductivity is a poorly characterized variable outside of commercial exploration

geophysics. Total sediment conductance, for our purposes, can be estimated on a basin

scale based on the sediment thickness (Flosadóttir et al., 1997; Tyler et al., 1997) or from

more detailed local geophysical data as done in chapter 3.

The vertical correlation factor γ = σ′v′/ σ v describes return electric currents that

flow more readily through more conductive parts of the water column. Measurements of

temperature and salinity simultaneous with the apparent electric field (Jh/σ) allow direct

calculation of the vertical correlation. Corrections are also possible from hydrographic

data or from data archives (Luther and Chave, 1993) by computing representative profiles

of geostrophic velocity and electrical conductivity. Prior calculations of γ found it to have

less than a 10% influence (Chave and Luther , 1990) for open ocean baroclinic modes, with

large values only occurring in strong baroclinic flows (e.g., Szuts, 2004).

Higher Order Term: Horizontal Gradients

The second terms can be called a higher order term (HOT) because it scales as H/L in this

formulation. This scaling explains why the 1D approximation is sufficiently accurate for

the small aspect ratios found in the open ocean. This chapter focuses on the effects that

the second term describes, using analytic and numerical techniques to calculate electric

fields and electric currents for smaller length scales than the assumptions of Sanford (1971)

allow. The assumption of small horizontal gradients is often invalid in parts of the ocean

that are dynamically interesting to physical oceanographers.

The second term of (2.2) depends on horizontal gradients of topography and of the

velocity field. In this form, horizontal gradients of H, λ, and v can all make this term

non-zero. The expression for vertical electric currents (Sanford , 1971) includes analogous

terms, except horizontal gradient operators are in front of them and they have a vertical

dependence on z.
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Both the first and the second terms contain depth-varying and depth-uniform compo-

nents. The first terms depend on local effects in the vertical, at most within a distance a

few times the water depth. Chave and Luther (1990) showed that the vertical averages of

the dominant mode (the first term in (2.2)) have a horizontal weighting function that has

a width of a few times the water depth. Similar horizontal dependencies are expected for

the second term, that the second term responds to a region within a few water depths.

Other Sources of Oceanic Electric Fields

The theoretical form of (2.2) contains another higher order term that describes horizon-

tally flowing electric currents that are called non-local electric currents (Sanford , 1971;

Tyler and Mysak , 1995a; Vivier et al., 2004) Such currents arise if there are downstream

gradients in Fzv
∗ and add a depth-uniform electric field offset. By assumption non-local

currents are zero in the 2D geometries considered later.

Periodic ocean circulation such as tides or Kelvin waves can generate further complex-

ities due to the introduction of time-variable flow. Changing surface elevation is another

source for generating non-local currents, while there is the potential for large-scale tidal

flow to inductively couple with deep conductive layers in the mantle. If the length-scale

of the flow is as large as the depth of conductive layers, generally > 500 km (Kuvshinov

and Olsen, 2006), then mutual induction can occur. The only oceanic flow that meets

these criteria of short time-scale and basin-wide extent is tidal flow.

Such phenomena are briefly mentioned for completeness, but they are tangential to

the goal of this chapter.

2.2.2 Observation Methods

Practically, electric field measurements are made from platforms that are either stationary

of freely drifting in the horizontal. These two platforms measure respectively a depth-

uniform electric field Eh = v∗Fz and the depth-varying electric current density divided by

conductivity Jh/σ = (v−v∗)×ẑFz. As the goal of this work is to determine how accurately

measured electric fields can be inverted to velocity, the electric field solutions presented
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in the next section will be evaluated for depth-uniform and depth-varying perturbations

from the 1D approximation.

Absolute electric fields are measured from stationary platforms such as cables or bot-

tom electrometers. For a stationary instrument the local velocity in (2.1) (v ×F ) cancels

that in the first term of Jh/σ, leaving only the electric fields caused by v∗ and HOT.

Free-falling platforms move horizontally at the local unknown water velocity, and the

resulting electric field across the instrument body comes from the electric current density

divided by σ (see Sanford et al., 1978), which is proportional to the relative velocity

v(z) − v∗.

If the instrument’s motion is measured independently, then the absolute velocity profile

and the absolute electric field (v∗Fz) can be recovered. Some instruments include a

secondary velocity sensor, such as a bottom-reflecting acoustic Doppler velocity sensor on

the Absolute Velocity Profiler (AVP, Sanford et al., 1985) or the RAFOS tracking for an

electrode-equipped RAFOS float (Electric Field Float, Szuts, 2004). Shipboard ADCP

or GPS surface fixes can also be used to give coincident water velocities. Generally, any

absolute velocity can be used to to make the relative velocity absolute provided that v∗

is indeed depth-uniform, in so doing also calculating the offset v∗.

Thus, the two parts of the magnetostatic solution that will be evaluated below are

the depth-uniform and depth-varying components. They are equivalent to barotropic and

baroclinic velocity modes.

2.3 Analytic and Numerical Techniques

Solutions for 2D representative cases are found using two methods: an analytic solution

and a numerical model for electromagnetics (Tyler et al., 2004). The former isolates 2D

effects due to horizontal velocity gradients and is evaluated for two different geometries,

while the latter isolates the influence of bottom topography for one geometry. The use

of simple geometries described by a few non-dimensional scales allows for evaluating the

solutions over a wide range of scales. Both techniques solve for the electric field and

electric current (that is, the magnetostatic solution) generated by prescribed velocities
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and topographies.

All models use mid-latitude northern hemisphere values for the earth’s magnetic field,

Fz = −40, 000 nT and Fh = 20, 000 nT (the field at 35◦N). The relative magnitude of the

horizontal and vertical components determines by how much Fz dominates the response:

the ratio |Fh/Fz| is greater than 1 at latitudes greater than 30◦ N or S. Close to the

geomagnetic equator where Fz approaches 0 the 1D approximation breaks down, although

there have been successful measurements up to 2◦ in latitude from the geomagnetic equator

(Kennelly et al., 1986). For the horizontal magnetic field to induce electric fields it must

be perpendicular to the direction of water motion, that is only the east-west velocity in

magnetic coordinates has a component due to Fh.

The magnitude of the velocity v0 is set at 1 m s−1 in all , which is an appropriate value

for energetic flows in the ocean. The equations are linear, so this choice is without loss of

generality. Most of the ocean is characterized by velocity that is an order of magnitude

smaller (0.1 m s−1), for which our results can be extended by considering relative errors.

Relative errors are calculated by normalizing with the maximum velocity for depth-varying

velocity errors, and with the barotropic velocity for depth-uniform errors.

2.3.1 Analytic Model, Infinite Sinusoidal Velocity

The analytic solution describes the electric fields that arise in an idealized ocean. The

electromagnetic solution for a geometry consisting of three horizontal layers (Figure 2.1)

can be solved analytically if the velocity varies as a sinusoid. The top layer is a surface jet

over −H ′ ≤ z ≤ 0 with a vertically uniform velocity v(x) = v0 cos(αx)ŷ, the underlying

water is motionless over −H < z ≤ −H ′, and there is a conductive sediment layer

beneath (−Hs < z ≤ −H). The wave number is α = 2π/L, where L is the wavelength

of the velocity forcing. The velocity forcing extends to infinity in the x-direction. The

ocean and sediment each have uniform conductivities of σ and σs. The magnetic field

has vertical and horizontal components (Fz, Fh). The x, y coordinates are not aligned

with east and north. The angle θ between the ocean velocity ŷ and magnetic north for a

particular region determines the magnitude of Fx = Fh sin(θ). Induction due to Fh only
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influences the geomagnetic east-west velocity.

Three non-dimensional scales can be formed from the four spatial scales L, H ′, H, Hs.

The solution below shows that the natural way to obtain non-dimensional parameters is

by normalizing with L, because of the scales combine as αH ′, αH, and αHs. Evaluation

of the solution shows, however, that there is practically no dependence on H either. The

scale H can also be used to normalize the scales, and is the more intuitive choice for

non-dimensionalizing the vertical scales. Thus, there are 4 non-dimensional scales for this

geometry that represent the aspect ratio H/L, the relative depth of the jet H ′/H, the

relative thickness of the sediment (Hs −H)/H, and the relative conductivity σr = σs/σ.

The depth of the jet H ′/H and the relative conductivity σr are both strictly ≤ 1, the

former because of geometry and the latter because sediment is conductive because of

seawater filling its pores and porosity must be less than 100%.

The problem is solved for the electric potential φ, from which it is straightforward to

calculate all fields of the electromagnetic solution (see Appendix A.1). The solution for

the horizontal electrical field Ex is shown here, as it is most relevant for this analysis. The

three regions correspond to those in Figure 2.1.

The terms induced by Fz are

Ex,1 = − v0Fz cos(αx)
[
1 − scrcs(α(H −H ′))

scrcs(αH)
cosh(αz)

]

Ex,2 = − v0Fz cos(αx)
sinh(αH ′)
scrcs(αH)

ccrss(α(z +H))

Ex,3 = − v0Fz cos(αx)
sinh(αH ′)
scrcs(αH)

cosh(α(z +Hs)) , (2.7)

where for notational simplicity I define

scrcs(C) ≡ sinh(C) cosh(α(Hs −H)) + σr cosh(C) sinh(α(Hs −H))

ccrss(C) ≡ cosh(C) cosh(α(Hs −H)) + σr sinh(C) sinh(α(Hs −H)) .

There is also a contribution from the horizontal magnetic fields (Fh). The electromotive

force generated by Fh is directed upwards, so when the flow is thin as described by

H/L � 1 the electric field induced by Fh scales as H/L. At the small width-scales
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ẑ
region 1

region 2

region 3

σ

σ

σs

a) L

–L/2 0 L/2

–Hs

–H

–H'
0

x̂

ẑ
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Figure 2.1: Ocean geometries for which magnetostatic solutions are calculated. (a) Infinite
forcing solved with an analytic solution (see section 2.3.1), with a sinusoidal velocity of
form cos(2πx/L) (top) and 3 horizontal layers (bottom). (b) Numerical Fourier expansion
of the analytic solution obtains a finite velocity forcing in the shape of a cosine jet (see
section 2.3.2), velocity (top) and the same 3 horizontal layers (bottom). (c) Sloping
topography solved with the numerical model MOED (see section 2.3.3), with a constant
velocity in the surface layer (top) and topography of shape −Hmid − At sin(πx/Lt) for
|x| < Lt/2 (bottom).



17

considered here, however, this contribution can be significant and so will be considered

below. The electric field solution is

Ex,1,Fh
= v0Fh sin(αx)

[
ccrss(α(H −H ′)) − ccrss(αH)

scrcs(αH)
cosh(αz) − sinh(αz)

]

Ex,2,Fh
= v0Fh sin(αx)

cosh(αH ′) − 1
scrcs(αH)

ccrss(α(z +H))

Ex,3,Fh
= v0Fh sin(αx)

cosh(αH ′) − 1
scrcs(αH)

cosh(α(z +Hs)) . (2.8)

These quantities have a super-script Fh to distinguish them from the dominant 1D con-

tribution from Fz.

2.3.2 Finite Velocity

Although analytically simple, the solution above has the unphysical property of repre-

senting a forcing field that extends to infinity in the x̂ direction. To be able to apply

this solution to realistic ocean currents that are bounded, we form a finite forcing by

linear combinations of the above solution. Longuet-Higgins et al. (1954) performed an

analytic inverse Fourier transform to represent a square jet of constant velocity v0 for

−L/2 < x < L/2 in the surface layer, but, due to the constraints of contour integration,

they only solved for z = 0. Work by Fristedt and Sigray (2005) extended this solution for

all z in the ocean, but their use of an infinitely thick sediment layer limits their analysis to

shallow coastal waters where the sediment can be much thicker than the ocean. Another

way to obtain a finite forcing function is to cast the problem in an elliptical coordinate

system, and then letting the velocity be constant out to a given elliptical radius. Ellip-

tical geometry, however, is most applicable for flow in channels and doesn’t describe the

first-order effect of finite sediments via the shorting factor λ.

The approach taken here is to perform a finite Fourier expansion numerically to eval-

uate the solution for any given finite forcing function. The forcing is taken to be

v(x) =




1
2

[
1 + cos

(
2πx
L

)]
|x| < L/2

0 |x| ≥ L/2
, (2.9)

as this form goes to 0 smoothly at the edges of the jet (Figure 2.1b).
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The solution becomes

Ex,i(x, z) =
∞∑

n=0

an,M [Ai(z) cos(kn,Mx) +Bi(z) sin(kn,Mx)] , (2.10)

where an,M is the Fourier coefficient for the (n,M)th wave number kn,M = 2πn/(ML),

where n = {0, 1, . . . , N}, M is an integer greater than 1 that determines the wave-number

resolution, and Ai(z) and Bi(z) are the depth-dependent coefficients for cos(αx) and

sin(αx) for the regions i = 1, 2, 3 as described by (2.7) and (2.8).

Although (2.10) is exact in the limit of M → ∞ and
∑

n → ∫
dk, in practice the

summation has to be truncated. The value of an,M decays to 0 for N 	M (see appendix

A.2), so there is little loss of accuracy by ending the sum at a very large wave number

kN,M 	 1. Numerical issues arise from the small wave-number end due to the requirement

of a finite M . In order for the electric potential to be continuous and repeating, as is

characteristic of all finite Fourier expansions, the large decrease in electric potential across

the jet must be balanced by a small increase in potential outside of the jet. This results

in a non-zero electric field outside of the jet that is physically unrealistic and depends on

the repeat period 1/M (see appendix A.2 for details)

The background Ex is removed as follows. First, a large value of M is chosen so

that the background Ex is much smaller than Ex(x = 0). A uniform Ex is added to

the entire domain to obtain a zero background field, and the result is then scaled to

maintain the initial maximum value of Ex. Addition and scaling of solutions is possible

because the Laplace equation is linear. The final corrected solution using this method is

the same within numerical accuracy for all values of M , substantiating the accuracy of

this correction.

2.3.3 Numerical Model, Sloping Topography

The analytic solution is computationally inexpensive to evaluate for its geometry of hori-

zontal layers, but the most convenient way to evaluate cases with changing bottom topog-

raphy is to use a numerical model. The Model for Ocean Electrodynamics (MOED Tyler

et al., 2004) is used. It is a 3D model that solves Maxwell’s governing electromagnetic
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equations in the frequency domain by finite-difference for the electric and magnetic gauge

potentials, given prescribed conductivity and velocity fields.

The same three layer case presented above is investigated with MOED, except that the

sediment/water interface is allowed to be non-horizontal (Figure 2.1c). A constant sedi-

ment thickness is maintained, so that the bottom of the sediment layer has the same shape

as the water depth. There are 4 length scales in addition to the relative sediment con-

ductance σr: Lt, At, Hmid and ∆Hs. The depth Hmid is used to make 3 non-dimensional

scales. A bottom depth is chosen of the form

H(x) =




Hmid −At x < −Lt

Hmid +At sin
(
πx
2Lt

)
−Lt ≤ x ≥ Lt

Hmid +At Lt < x

. (2.11)

Note that Hmid is the water depth at the center of the slope, with the two uniform water

depths on either side being Hmid −At and Hmid +At. The total topographic relief is 2At.

As the sediment has a uniform thickness, this yields Hs(x) = H(x) + ∆Hs. The grid

spacing in x is smallest over −1.3L < x < 1.3L to fully resolve the slope (∆x = Lt/80),

beyond which the grid-spacing increases by 10% with each successive grid point.

The surface jet is uniform in x of magnitude v0 = 1 m s−1 and has a uniform depth H ′,

but because of topography v = v0H
′/H changes across the slope. As the parameter H ′

is already investigated in the analytic model, for this solution it is set to a constant value

of half the smallest water depth, (Hmid −At)/2 to reduce the number of non-dimensional

parameters.

The velocity jet extends from x = −21(Hmid − At) to x = 21(Hmid + At), that is 20

times the water depth beyond the edges of the slope. This factor is large enough so that

2D effects due to the edges of the jet do not interact with the slope region, based on the

results of the analytical models.

The conductivity interfaces in the model domain need to be smoothed for numerical

stability. For the water/sediment and sediment/crust interfaces the conductivity over 4

grid-points in the vertical was smoothed based on the exact interface depth according to

σ(zi) =
1
2

[
1 + sin

(
2π(zi − zinterface)

4∆z

)]
(σupper − σlower) + σlower (2.12)
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where zi is within 2 grid points of the depth of the interface zinterface, ∆z is the vertical grid-

spacing (∆z depends on At, Hmid and ∆Hs), and σupper and σlower are the conductivities

of the upper and lower layers. A non-conductive crust underlies the sediment, for the

purposes of limiting the model domain. Realistically, the crust has conductivities of

0.0001 – 0.03 S m−1 (Chave et al., 1992; Simpson and Bahr , 2005), which is at least an

order of magnitude smaller that sediment conductivity and will not support a flow of

electric current that significantly alters the solution.

Validation of MOED is demonstrated in Tyler et al. (2004) for 1D, 2D, and 3D cases

that have analytical solutions. The particular implementation used here is cross-validated

with the analytical solution evaluated with a Fourier summation (appendix A.3). The

rms difference between Ex generated by MOED and by the analytic finite-velocity case is

0.37% of the maximum electric field, calculated for the region −1/2 < x/L < 1/2 and for

all z.

2.4 Results

2.4.1 Analysis of Solutions

For each of the three geometries, the 2D magnetostatic solution can be solved for any

combination of the non-dimensional parameters. To understand how the solution depends

on each of the parameters, multiple solutions are calculated by varying each parameter

over a range of values.

The 2D solutions show the electric fields and electric currents in a vertical plane

that corresponds to the toroidal mode. The shape of electric fields and electric currents

gives insight into where the largest perturbations are relative to the 1D approximation.

To be able to present the results over the full parameter space, however, each set of

non-dimensional parameters needs to be summarized with a number that evaluates one

particular aspect of the solution. The solutions for all geometries are evaluated with a

common approach that is presented first in this section.

There are two modes of electric fields that will be analyzed, depth-uniform and depth-

varying modes. In terms of electromagnetic fields, these evaluation modes correspond
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to the two ways of performing electric field measurements, from stationary or moving

electrodes. In terms of velocity, these modes correspond to barotropic and baroclinic

velocity modes.

Depth-uniform Electric Field Mode

The depth-uniform mode is the vertically uniform electric field (v∗Fz) defined in (2.6). In

the 1D approximation it is driven by the vertically averaged velocity with proportionality

factors due to sediment conductance and vertical correlations of conductivity and velocity.

For the 2D situation discussed here Ex is not vertically uniform. A 2D v∗, v∗
2D, is

calculated by averaging Ex in the water column. The relative error of the depth-uniform

velocity error is found by normalizing by v.

To convert v∗
2D to v the shorting of the sediment needs to be removed by multiplying

v∗
2D by 1 + λ. The factor λ is calculated in two ways that are described below.

In general, the baroclinic correlation of σ and v would need to be removed from v∗ by

dividing by 1+γ, but this term is 0 in all three geometries because the ocean conductivity

is uniform.

Velocity error from λ1D The most direct method is to use λ calculated from the 1D

theory (2.5), denoted λ1D, to correct the v∗ to a physical velocity. For all of the models,

λ1D = (Hs −H)σr/H. This leads to an error of

ελ1D
= v − v∗(1 + λ1D) (2.13)

Though this method is straightforward to use for the prescribed geometries presented here,

it presupposes knowledge of the sediment thickness and electrical conductivity for calcu-

lating λ1D (see Flosadóttir et al., 1997; Vivier et al., 2004). As geophysical observations

of these properties are limited, this approach is not always feasible.

Velocity error from λ calculated over space A method more analogous to obser-

vation methods is to use an empirically-derived λ to correct v∗. Profiling electric-field

instruments that use a referencing velocity calculate both an absolute velocity profile that
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yields v and γ with conductivity measurements (see section 2.2.2) and the vertically-

averaged electric field that yields v∗.

If there is no knowledge of the sediment thickness or conductivity, 1 + λ can be cal-

culated heuristically from the ratio v/v∗. From an observational perspective, multiple

measurements are necessary to accurately calculate λ. Typically v changes over time due

to horizontal meanders of the ocean current.

For meandering jets, temporal changes in velocity at one location result from sampling

different parts of the velocity structure. As the solution does not change with horizontal

velocity shifts for the geometries considered here, sampling in space across the velocity

shape is equivalent to meandering velocity. The value of λ at any location x0, denoted

λdx, is the average ratio over a horizontal range x0 − ∆x < x < x0 + ∆x

1 + λdx =< v/v∗ >dx (2.14)

The value used for ∆x is 100 m. The resulting barotropic error is

εdx = v − v∗(1 + λdx) (2.15)

Depth-varying Electric Field Mode

The depth-varying mode is the second way to evaluate the results. The depth-varying

velocity error ε′ is calculated by

ε′(x, z) = v(x, z) − Jx(x, z)
σ(z)Fz

− ε′(x)

ε′(x) =
1
H

0∫
−H

[
v(x, z) − Jx(x, z)

σFz

]
dz , (2.16)

where H varies horizontally for the geometry with sloping topography. Subtracting a

vertical mean ε′ decouples the depth-varying velocity error from the depth-uniform velocity

error, suitable for profiling floats. These errors will be displayed as absolute values, but

relative errors are obtained by scaling with the maximum velocity v0 = 1 m s−1.

Stationary sensors that measure ε at a fixed depth z0 are also in error by ε′(z0), which

is the amount by which Ex is not vertically uniform at that depth. The complete error

for a stationary sensor is thus ε+ ε′(z0).
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The vertical dimension of ε′ can be summarized in two ways: by calculating a vertical

maximum ε′max or by calculating the vertical second moment ε′std. The vertical second

moment is the continuous equivalent of a standard deviation:

ε′std =


 1
H

0∫
−H

ε′2 dz


1/2

. (2.17)

where the vertical mean (ε′) has already been removed (2.16).

In practice, the correction to absolute velocity ε′ is usually calculated from reference

velocities collected over less than the full water column, adding a potential mean offset

ε′ to the depth-varying velocity error. For instance, shipboard ADCP velocities used to

reference XCPs are only obtained in the upper 250 m of the water column, so this is the

range over which velocity profiles are made absolute. The second moment and maximum

velocities are recalculated for this situation using the alternative form

ε′bias =
1

H2 −H1

−H2∫
−H1

[
v(x, z) − Jx(x, z)

σ(z)Fz

]
dz ,

ε′bias(x, z) = v(x, z) − Jx(x, z)
σ(z)Fz

− ε′bias(x)

ε′std,bias =


 1
H

0∫
−H

ε′2bias dz


1/2

. (2.18)

where the integration limits are typically H1 = −300 m and H2 = −50 m. Some instru-

ments use absolute velocities obtained in the water column for referencing: the Absolute

Velocity Profiler when within 250 m of the seafloor (Sanford et al., 1985), or the Electric

Field Float at it’s floating depth (Szuts, 2004). Such referencing gives similar errors for

ε′bias and ε′std,bias as the surface referencing performed here

Velocity errors induced by Fh

The full signal from Fh is considered an error, because the 1D approximation includes no

contribution from Fh. Ex is normalized to velocity by dividing by Fz (as is Jx), since the

contribution from Fh is inseparable from that of Fz in measurements. The errors induced
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by Fh increase linearly with Fh/Fz, thus case must be taken near the geomagnetic equator

where Fz goes to 0.

To calculate the velocity errors caused by Fh the above equations (2.13), (2.16) and

(2.4.1) need to be modified by removing the expected velocities v and v(x, z) from the

equations. The forms that are evaluated later are:

ελ1D,Fh
= v∗

Fh
(1 + λ1D) (2.19)

ε′Fh
(x, z) =

Jx(x, z)
σ(z)Fz

− ε′(x)

ε′Fh
(x) =

1
H

0∫
−H

[
Jx(x, z)
σFz

]
dz , (2.20)

ε′biasFh
(x, z) = v(x, z) − Jx(x, z)

σ(z)Fz
− ε′bias,Fh

(x)

ε′bias,Fh
=

1
H2 −H1

−H2∫
−H1

[
Jx(x, z)
σ(z)Fz

]
dz , (2.21)

The quantities λ1D and Fz are used for normalizing, because any electric fields or electric

currents induced by Fh will be initially considered part of the first order signal. The

quantity λ has no physical meaning for the contribution from Fh, so (2.14) and (2.15) are

not calculated.

2.4.2 Analytical solution: sinusoidal velocity

The simplest case is considered first with a horizontal 3-layer geometry. From the solution

presented earlier (2.7), a 2-dimensional λ is defined as

1 + λ2D =
v

v∗
2D

=
vFz

Ex

(2.22)

Calculated exactly from 2.7, this is

1 + λ2D =


1 +

1
αH ′ sinh(αH ′) sinh(α(Hs −H)) (−σr)

sinh(αH) cosh(α(Hs −H)) + σr cosh(αH) sinh(α(Hs −H))




−1

.

(2.23)
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The sinusoidal forcing causes the electric field to be in phase with velocity, such that this

λ2D is valid at all x, even though v or v∗ may be small or even 0.

The small wave-number limit of this solution should converge to the 1D theory when

1/α = L/2π is much greater than H ′, H, and Hs. For comparison, the 1D vertically

uniform electric field would be

E
1D
x = − v∗Fz = −v

Fz

1 + λ1D
(2.24)

= − H ′v0 cos(αx)
H

Fz

1 + λ1D
, (2.25)

where λ1D = (Hs −H)σr/H from (2.5).

The small wave-number limit is obtained from (2.3) by keeping the first term of the

Taylor expansions for the hyperbolic trig functions. It is straightforward to show that

(2.23) reduces to the 1D form. When taking the small wavenumber limit of λ2D, the term

in the denominator

scrcs(αH) = sinh(αH) cosh(α(Hs −H)) + σr cosh(αH) sinh(α(Hs −H)) (2.26)

reduces to αD. The vertical scale D is the governing vertical scale for the solution — it

is the water depth that is equivalent to the vertical conductance of the water column plus

sediments. For this geometry it is defined as D = H(1+λ). In the 2D approximation the

equivalent quantity becomes (1/α) scrcs(αH) and includes a dependence on L.

A second limiting case results from removing the sediment layer by letting Hs → H

or σr → 0. The numerator of the fraction in (2.23) becomes 0, and so 1 + λ2D → 1

as expected — there is no longer any shorting of the oceanic electric field through the

sediment.

Now we turn to evaluating the magnitude of the 2D electric fields. Detailed analysis

that focuses on inverting the electric field to velocity will be postponed for the later cases

that are closer approximations to realistic flow fields.

For the analytic solution we only seek general dependencies of the velocity errors on

the 4 non-dimensional parameters. The depth uniform error (2.27) is simplified by noting

that v/v∗ = λ2D is uniform for all x. Substituting v/(1 + λ2D) for v∗ and dividing by v
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Figure 2.2: The depth-uniform relative velocity error |εsin/v| from (2.27). (a) The relative
error plotted for (Hs −H)/H against H/L, with σr = 0.1. (b) The proportional change
in |εsinv| if σr varies by a factor of 2 centered on σr = 0.1 (see text). Both panels have
the common value H ′/H = 0.5.

gives
εsin
v

= 1 − 1 + λ1D

1 + λ2D
. (2.27)

Because the magnitude of λ2D is greater than λ1D, the absolute value is taken to obtain

a positive error. The relative depth-uniform velocity error is the same as

|1 − (1 + λ2D)/(1 + λ1D)| . (2.28)

For instance, if λ2D and λ1D are equal the relative error εsin/v is 0, and if their ratio is

1.1 the relative error is 10%.

The depth-uniform relative error |εsin/v| is plotted in Figure 2.2. There is a strong

dependence of the error on H/L, (Hs−H)/H, and σr. The shape of the error is controlled

by H/L (Figure 2.2a ), for if H/L is less than 0.8 the error decreases exponentially with

H/L. Above this transition point the error is constant with H/L in the high wave-

number limit, although this region is not realistic because ocean currents are never as

wide as they are deep. Below the transition point the error increases more rapidly with

sediment thickness (Hs −H)/H.

The transition point below which the relative error decreases exponentially with H/L
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is entirely dependent on the aspect ratio. This result makes sense by noting that the 1D

approximation requires a small vertical domain to compress E to one dimension (hor-

izontal). Since electric fields tend to spread equally in all dimensions, thick sediments

allow Ex to vary vertically by being weaker at the bottom of the sediment layer. A thin

but conductive sediment can support the same amount of electric current as a thick but

resistive sediment layer, and the 2D perturbation will be the same. Thus it is the normal-

ized vertical conductance of the sediment (Hs −H)σr/H that determines the magnitude

of error when H/L is held constant. This quantity is the definition of λ1D, so in addi-

tion to describing the first order shorting of oceanic electric fields it also determines the

magnitude of the 2D error.

The sensitivity of εsin to sediment conductivity σr (Figure 2.2b) is shown by the relative

change in the error caused by a factor 2 change in σr centered at σr = 0.1. The graphed

quantity is the ratio between εsin calculated for σr = 0.1/
√

2 and for σr = 0.1
√

2. For

thin sediments the factor approaches 2, as expected from the 1D definition of λ, but if

the sediments are very thick the relative change is smaller. This demonstrates that if the

electric field reaches to the bottom of the sediments then the sensitivity to σr is linear,

according to the 1D approximation.

The depth-varying velocity error ε′std is not realistic for this geometry, because the

infinite sinusoidal velocity prevents Jx from approaching the 1D approximation at small

aspect ratios. J flows in elliptical cells that are strongest at z = −H ′ even for H/L� 1,

instead of becoming nearly horizontal and evenly distributed in the two ocean layers as

expected. Analysis of the depth-varying error is performed for the more realistic later two

geometries.

The contribution from Fh only occurs for water motion that is perpendicular to mag-

netic north. That these terms scale as H/L implies that their contribution to Ex and Jx

may be significant at large wave-numbers. The form for the vertically averaged electric
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field is

Ex,Fh
=Fh v0 sin(αx)

1
Hsα scrcs(αH)

{[
cosh(αH ′) − 1

]·
[
scrcs(αH) + scrcs(α(H −H ′)) + sinh(α(Hs −H))(1 − σr)

]
+ sin(αH ′)

[
ccrss(α(H −H ′)) − ccrss(αH)

]}
. (2.29)

In the small wavenumber limit this becomes

lim
α→0

Ex,Fh
→ H ′

H
v0 sin(αx)Fh(1 − H

Hs
)σr . (2.30)

The importance of Fh-induced terms is due to their magnitude relative to the dominant

signal induced by Fz. In the small wavenumber limit, the ratio of the depth-uniform Ex

from Fh compared to that from Fz is

Fh

Fz

sin(αx)
cos(αx)

(1 −H/Hs)σr(1 + λ) . (2.31)

Three of the factors are less than 1 over most of the globe: Fh/Fz < 1 at mid-latitudes

and higher, seafloor sediment is typically thin in the open ocean, with a typical maximum

scaling of Hs ≤ H/2 and thus 1 −H/Hs ≤ 0.5 is of order 0.1, and the effective sediment

conductivity σs is less conductive than seawater by a factor of 4–10. The remaining factor

1 + λ1D is slightly greater than 1 in the open ocean, usually < 1.2, although it can reach

values of 2 or larger.

The Fh contribution is out of phase with the velocity forcing ( sin(αx)/ cos(αx) ), the

electric field in energetic regions will be almost entirely due to Fz. Near the center of the jet

there is a 1/L dependence in agreement with the scaling of (2.29), because sin(αx) ∼ αx

in the small wave-number limit. On the edges the contribution from Fh will be relatively

larger, even though the magnitude remains small relative to v0 due to the scaling of the

other factors. In fact, at x = ±L the relative contribution from Fh is infinite. Because

Fh is expected to be most significant near the edges of velocity jets, it is more physically

meaningful to evaluate this effect for a bounded velocity feature, which is done so below

in section 2.4.3
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To summarize the results, the velocity errors for a sinusoidal velocity and the dominant

magnetic component Fz depend most strongly on the aspect ratio H/L, with further

exponential dependence on sediment thickness and conductivity through their combination

in λ1D = (Hs − H)σr/H. Errors are less than 3% for sediment as thick as the water

column and typical sediment conductivities (σr = 0.1). The velocity error in the east

velocity component cause by induction with Fx generates the largest deviations from the

1D approximation near the edges of velocity jets.

2.4.3 Analytical solution: velocity jet

A finite velocity forcing is a better representation of realistic flows in the ocean than the

sinusoidal shape used above. Such a form is obtained by performing a Fourier summation

of the analytical solution (2.10). The 4 non-dimensional parameters are the same as in the

analytic solution above, except that now L refers to the full width of a bounded velocity

field.

The solution for one set of parameters is presented first to provide a physical basis

for the 2D solution and to present the methods of calculating depth-uniform and depth-

varying velocity errors.

Representative Example

Figure 2.3 shows the solution for width L = 10 km, jet depth H ′ = 500 m, water depth

H = 1000 m, sediment depth Hs = 2000 m, and relative sediment conductivity σr = 0.1.

The width of 10 km is smaller than could be expected realistically, as it requires an aspect

ratio of 0.1, but it shows how the electromagnetic solution deviates from the 1D case. The

horizontal electric field is not vertically uniform due to spreading of Ex in the sediment.

There are also small regions of negative Ex at the edges of the jet (not visible with this

choice of contours). Although the dominant component of electric current density is Jx,

the aspect ratio is large enough to see that Jz has a dipole structure and completes the

circuit in the vertical plane. For this example the only induction is due to the vertical

magnetic field. A horizontal magnetic field Fx would predominantly generate vertical
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electric currents, but because of the large aspect ratio the horizontal electric current

density may be significant.
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Figure 2.3: Solution for a representative case with a cosine jet forcing: (a) velocity, (b)
Ex, (c) Jx, and (d) Jz. The solution is for a small-width jet, with L = 10 km, H ′ = 500
m, H = 1000 m, Hs = 2000 m, and σr = 0.1.

The depth-uniform components and their errors are shown in Figure 2.4. The v∗ (red

solid line) calculated from the vertically averaged electric field does not differ much from

the 1D v∗ (blue dashed line). With λ1D = 0.1 for this case v∗ is only 10% smaller than

v (black). Panel (b) shows depth-uniform velocity errors ε from two ways of calculating

λ. The error that results from applying the 1D theory with knowledge of the sediment

ε1D (solid line) has amplitudes of 0.002–0.004 m s−1. Spreading of electric field outside

of the jet is shown by non-zero ε1D for |x| > L/2. Even if this electric field is incorrectly

interpreted as due to a local velocity, the magnitude is less than 1 mm s−1 (< 2% relative
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lines show the edge of the cosine jet, and the parameters are the same as in Figure 2.3.

error compared with v).

If there is no independent knowledge of the sediment, then λ must be calculated

heuristically from changes in the velocity forcing. The use of λdx assumes that the cross-

stream structure of the jet is sampled, such as due to horizontal meandering of the jet

during repeat sampling. The depth-uniform error from λdx (dashed line) is near zero in

the center of the jet, with maximum errors of 2 mm s−1 in a small region near the edge

of the jet.

To summarize the depth-uniform error for this set of parameters (L,H ′, H,Hs, σr) the

value of ε1D at x = 0 is taken, shown by the dot in Figure 2.4 and notated εBT.

The second type of error is the depth-varying errors, shown in Figure 2.5. Unlike the

multiple ways to calculate the depth-uniform error, the depth-varying error is simply the

difference between v(z) and Jx(z)/(σFz) with the vertical mean removed. In the water

column, the errors are surface- and bottom-intensified (Figure 2.5a). The vertical second

moment is at most 1 cm s−1 (Figure 2.5b, solid thin blue line), and the maximum error

reaches 1.5 cm s−1 (blue dashed line). The bias introduced by referencing the relative

velocity profile near the surface has a 60% larger second moment and a twice as large

maximum error.
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surface-referenced profiling float (e.g. an XCP) are shown in red: vertical second moment
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second moment over the area of the jet ε′BC,bias (thick solid red line) (see text for details).
The dashed vertical lines show the edge of the cosine jet, and the parameters are the same
as in Figure 2.3.
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To summarize the depth-varying error the second moment of ε′std is calculated over

|x| < L/2, which is shown by the thick blue line (0.006 m s−1) and notated εBC. For

comparison, the biased quantity is shown in red and is 60% larger (0.01 m s−1).

For the large aspect ratio limit we have to be careful that the induced electric from Fh

doesn’t unduly alter the horizontal electric field at the edges of the jet. Fh directly induces

vertical electric currents, but it can generate Ex as the vertical currents form a complete

circuit by connecting in the horizontal. Contributions from Fh only arise from the east

component of velocity, so this discussion only applies to flows with a zonal component.

The Ex that is induced by Fh is treated as an error term, since it is not expected in the

1D approximation. The depth-uniform quantity ε1D,Fh
is less than 0.002 m s−1 (Figure

2.6a), the same magnitude but slightly smaller than the depth-uniform error generated

by Fz. The depth-varying error ε′std resulting from Fh in the east component of velocity is

roughly 2 times larger than that from Fz, with vertical second moments of 0.025 m s−1, a

maximum of 0.06 m s−1, and a second moment across the jet of 0.02 m s−1 (0.03 m s−1,

0.08 m s−1, and 0.02 m s−1 for the biased quantities).

Parameter Space Analysis

To see how errors depend on the full parameter space, it is necessary to summarize each

solution for one set of parameters with a single number. For the depth-uniform velocity

error, this is chosen as ε1D evaluated at x = 0 and denoted εBT. This is the largest error

shown in Figure 2.4b. The depth-varying error is summarized by the second moment of

ε′std over |x| < L/2 and is called εBC.

The parameter space for the terms induced by Fz is shown in Figure 2.7, where the

contoured quantity is in m s−1. The shape of lines of constant error εBT are similar to the

sinusoidal velocity forcing (Figure 2.2) but do not have as sharp a transition between the

small and large regimes of H/L — in comparison this plot looks like it has been spatially

smoothed. The depth-uniform velocity error decreases exponentially for H/L less than

0.5–1, the same value as found in Figure 2.2. For sediment as thick as the water, an

error smaller than 0.01 m s−1 occurs if H/L ≤ 0.01λ−4/3
1D , as found by an approximate
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The depth-varying errors, same as Figure 2.5b. The dashed vertical lines show the edge
of the cosine jet, Fh/Fz = 0.5, and the parameters are the same as in Figure 2.3.
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fit of the 10−2 contour. The depth-varying velocity error εBC has no dependence on the

sediment thickness, and the magnitude of the error increases exponentially for H/L less

than 0.5. A 0.01 m s−1 errors occurs if H/L ≥ 0.2. The dependence on σr is slight for

the depth-varying error.

A factor 5 change in H ′ (from H ′/H = 0.5 to 0.1) reduces the depth-uniform and

depth-varying errors by factors of 3–5, where the larger reduction occurs for thick sediment

and large H/L.

The velocity errors that arise in the east component of velocity due to Fh are shown

in Figure 2.8 for the same parameter space. The depth-uniform errors are smaller than

those cause by Fz and depend mostly on the sediment thickness. For any aspect ratio,

errors are below 0.003 m s−1 if the sediment is less than 3 times as thick as the water

column. By contrast, the depth-varying errors due to Fh are larger than those due to Fz:

a 0.01 m s−1 error occurs if H/L ≥ 0.06. The transition region to uniform error with H/L

still occurs at H/L = 0.5, although the maximum uniform error is around 0.05 m s−1.

The influence of H ′ is much stronger for the Fh contribution: the depth-uniform

error is reduced by 2–10 if H ′/H changes from 0.5 to 0.1, while the depth-varying error is

reduced by 25–30 for the same change. This is expected, as Fh generates a vertical electric

potential, of which the magnitude depends on a vertical integral of the forced potential

that is close to H ′/H.

2.4.4 Sloping Bottom

To extend the analysis to include sloping topography, a second set of solutions are solved

with the electromagnetic numerical model MOED (Tyler et al., 2004). The schematic

geometry (Figure 2.1c) has 4 spatial scales: the width of topographic slope Lt, the ampli-

tude of topography At, the water depth at the center of the slope Hmid, the thickness of

sediment ∆Hs, and the depth of the jet H ′. Normalizing by Lt yields 4 non-dimensional

spatial parameters, and the fifth non-dimensional parameter is σr.



36

a) b)

10 -2

10 -310 -4

10 -5

10 -6

10 -4

10 -3

10 -2
10 -1

10
-2

10
0

10
-2

10
0

H/L

(H
s-H

)/
H

10-1

10
-1

10
-2

10
-3

10
-4

10
-2

10
0

10
-2

10
0

H/L
(H

s-H
)/

H
10

-1

10
-1

10
1

10
-1

10
1

10
-1

εBT εBC

Figure 2.7: Velocity errors from the analytical model for finite forcing, induced by Fz. (a)
Depth-uniform velocity error εBT. (b) Depth-varying velocity error εBC. The remaining
parameters are H ′/H = 0.5 and σr = 0.1.

10-2.5

10 -3

10 -4

10 -5

10
-2

10
0

H/L

(H
s-H

)/
H 10

-1.5

10
-2

10
-2.5

10
-2

10
0

H/L

(H
s-H

)/
H

10
-2

10
0

10
-1

10
1

10
-2

10
0

10
-1

10
1

10
-1

10
-1

a) b)εBT εBC

Figure 2.8: Velocity errors from the analytical model for finite forcing, induced by Fh. (a)
The maximum depth-uniform velocity error εFh

within |x| < L/2. (b) The second moment
of ε′Fh

over |x| < L/2 and −H < z < 0. The remaining parameters are H ′/H = 0.5 and
σr = 0.1.



37

Representative Example

The solution for one set of parameters is presented first, before we generalize the results

over the parameter space. Figure 2.9 shows the results for the parameters Lt = 3.2 km,

At = 350 m, Hmid = 1000 m, H ′ = 325 m, ∆Hs = 1000 m, and σr = 0.1. This is

equivalent to an average bottom slope of 9◦. The main influence of the topography is to

allow an electric current to flow down the slope, both in the water and in the sediment.

If the slope were to become shallower, the 1D approximation would hold better at each

point along the slope and the vertical electric current density would decrease towards 0.

The depth-uniform component is presented in Figure 2.10. The depth-averaged veloc-

ity (black) varies in tandem with topography, and λ is larger on the shallower side because

the sediment layer is thicker relative to water depth. The 1D v∗ (blue) is calculated ac-

cording to 1D theory and is corrected to asymptote to the value of v∗
2D far from the slope.

Smoothing σ across the seafloor/water interface introduces imprecision as to the vertical

limits of the integrals that define v∗ and derived quantities. The physical requirement

that v∗ attain a constant value far from topography is met on either side of the slope,

however, so the numerical solution meets the physical expectation.

The quantities v∗
2D and v∗

1D (Figure 2.10a) are very close — their difference (Figure

2.10b, solid line) is at most 0.001 m s−1. The 2D v∗ is larger (smaller) than v∗
1D on

the upper (lower) part of the slope. To summarize this depth-uniform error the second

moment is calculated over |x| < Lt, εBT. The error that results from using an empirical

calculation of λdx (dashed line) is an order of magnitude smaller.

The depth-varying errors are shown in Figure 2.11. As with the analytical model with

finite velocity, the errors are intensified near the water surface and near the seafloor (Figure

2.11a). There is a little spreading of the velocity error beyond the slope. The magnitude

of ε′std is below 0.004 m s−1 (solid thin blue line), with a second moment over |x| < Lt of

0.0025 m s−1 (solid thick blue line). The biased quantities for surface-referenced profiling

floats are 50% larger, but still well below instrumental accuracy. The depth-varying error

is summarized by the second moment of ε′std (0.002 m s−1), εBC.
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Parameter Space Analysis

The parameter space for velocity errors are presented in Figure 2.12. At small topographic

aspect ratios Hmid/Lt the depth-uniform error εBT depends on ∆Hs/H, but for larger

aspect ratios the error loses its dependence on sediment thickness. The sensitivity of the

error is proportional to σr. The combined dependence is roughly proportional to λ1D.

If the topographic relief At/Hmid is small (< 0.35) the depth-uniform error is similarly

small, but for values greater than 0.4 the error is most correlated withHmid/Lt. Generally,

errors are less than 0.01 m s−1 if Hmid/Lt < 1, or less than 0.003 m s−1 if Hmid/Lt < 0.3

if the remaining non-dimensional parameters are not at the extreme end of their ranges.

In contrast, the depth-varying velocity error εBC, the standard deviation of ε′std over

−Lt < x < Lt, depends mostly on Hmid/Lt. The error is largest if the topographic relief

and the jet depth are near-equal amplitude (At/Hmid = 0.5). As At increases the depth

of the jet decreases because v is forced to be constant on the shallow side of the slope,

which leads to a large reduction in v over the slope and on the deep side. On the other

hand, it is more obvious that a small topographic relief leads to smaller depth-varying

errors. There is a counter-intuitive decrease in the error with increases in ∆Hs/Hmid and

σr. The reduction is small: a factor 100 increase in ∆Hs/Hmid reduces εBC by a factor

of 3, and a factor 4 increase in σr leads to a factor 1.5–2 reduction. The lines of constant

error are nearly vertical when the parameter space is viewed with ∆Hs/Hmid or σr on the

ordinate (not shown).

2.5 Discussion

The general question this study addresses is to what extent does the electric field at one

location depend on the surrounding velocity and conductivity (seafloor and sediment)

structure? The approach taken isolates the effect of gradients in velocity and topogra-

phy for independent analysis on the basis of non-dimensional scales. Having presented

solutions for three geometries earlier, we now discuss generally how the magnetostatic

solutions are perturbed from the 1D situation. Although the simple nature of the geome-

tries are applicable to many realistic situations, not every type of flow has been explicitly
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modelled and so the extension of our results to other geometries is discussed. The non-

dimensional parameters were prescribed without recourse to dynamic constraints, so it

remains to proscribe the regions of parameter space that are not realistic.

2.5.1 General Structure of 2D Perturbations

To present how the 2D solutions are perturbed from that expected by the 1D approxima-

tion, unrealistically narrow width-scales are used so that the 2D effects are obvious. The

1D approximation assumes that electric currents flow horizontally and that all points in

the vertical are at the same electric potential.

The perturbations that arise from velocity gradients are shown (Figure 2.13) by a

stream function for J , ψJ (top row) and by the electric potential φ (bottom row). The

solutions are from the analytic model with a finite cosine jet for the parameters L = 500

km (left column) and L = 1 km (right column), with common values of H = 1 km,

H ′ = 500 m, and σr = 0.1. The vertical exaggeration for L = 500 km is 500, whereas

for L = 1 km it is 1. The electric current stream function shows the paths along which

electric currents flow. It is defined by ∇h × k̂ψJ = J and is calculated directly with the

same Fourier summation as used to calculate E and J .

When L = 500 km, electric currents are confined within the jet (Figure 2.13a) and

they flow horizontally, as demonstrated by vertical lines of electric potential (Figure 2.13c).

When the velocity scale decreases (L = 1 km), these currents develop a vertical compo-

nent. If L is small enough, the electric currents no longer fully reach to the bottom of

the sediment column (Figure 2.13b) and the electric field is weaker in the sediment and is

no longer vertically uniform (Figure 2.13d). This has the effect of reducing the effective

sediment shorting: Ex averaged in the water column is larger than predicted by the 1D

theory. This effect is independent of H and H ′, and the parameter space analysis shows

that the error is less than 0.01 m s−1 if H/L ≤ 0.01 (λ1D)−4/3. Weak electric fields extend

beyond |x| < L/2 to regions where there is no velocity forcing, but the magnitudes are

less than a few percent of the maximum v at the center of the jet.

Perturbations caused by sloping topography are presented in Figure 2.14. The solu-
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tions are from MOED for Lt = 100 km and Lt = 1 km, with common values of At = 333

m, Hmid = 1 km, H ′ = 500 m, and σr = 0.1. The vertical exaggeration is 100 and 1 for

Lt of 100 km and 1 km. The stream function ψJ is calculated numerically in Matlab.

The stream lines are chosen to be visually evenly spaced in the water column, but the

separation between adjacent lines is smaller in the sediment.

When the sea floor is no longer horizontal but the slope (or Hmid/Lt) is small, the elec-

tric currents follow the slope smoothly (Figure 2.14a). Streamlines enter the sediment in

close relation to how v increases as the bottom shoals, via the 1D approximation. Isopo-

tentials are vertical, demonstrating that electric currents are almost entirely horizontal

(Figure 2.14c). As the slope steepens, the electric currents refract when they enter the

sediment and they don’t uniformly fill the bottom of the sediment near x/Lt = 0.5 (Figure

2.14b). This effect can be seen more clearly in Figure 2.11a, where negative (positive)

velocity errors ε′ at the seafloor corresponds to positive (negative) depth-uniform error

ε1D. The electric potential changes from vertically uniform to tilted perpendicular to the

bottom (Figure 2.14d). Extrema in Ex occur at the upper and lower parts of the slope.

2.5.2 Velocity Errors for 2D perturbations

The deviations of the electric current stream function ψJ and the electric potential φ

discussed above are slight, even for the unrealistic cases of velocity jets and bottom slopes

that have a 1:1 aspect ratio (Figures 2.13b,d and 2.14b,d). Although a case of 1:10 aspect

ratio (0.1) is more realistic, the 2D perturbations are practically indistinguishable from

the 1D approximation. The calculation of velocity errors ε and ε′ shows more precisely the

errors that would arise from a 1D interpretation of Ex and Jx generated by 2D features.

The parameter space analyses show that there is a common transition point below

which the depth-uniform errors decrease exponentially with H/L, which occurs at H/L

or Hmid/Lt of 0.5–1. The error ε depends exponentially on both (Hs −H)/H and σr, in

particular, ε1D varies closely with λ1D. The dependence of depth-uniform errors on H ′/H

is close to linear. The depth-varying errors depend most strongly on H/L or Hmid/Lt,

with secondary dependence on H ′/H and At/Hmid. The largest ε′ errors occur when the
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jet depth or the slope height fills an equal fraction of the water column, with decreasing

error for larger or smaller values of these two parameters. The depth-varying error is

only weakly dependent on the sediment thickness ∆Hs or the sediment conductivity σr.

Roughly, depth-varying errors generated by Fh are largest for a given aspect ratio, values

of < 0.01 m s−1 for H/L ≤ 0.2; followed by those due to Fz < 0.01 m s−1 for H/L ≤ 0.06;

and the smallest arise from sloping topography, < 0.01 m s−1 for Hmid/Lt ≤ 1.

When velocity gradients are large, perturbations from the 1D approximation result

from electric currents not reaching the bottom of the sediment layer (for the depth-uniform

errors) and not exactly following the velocity forcing (for the depth-varying errors). The

breakdown is related to the increase of the vertical component Jz, which implies a scaling of

H/L because it is proportional to ∂v/∂x in the small aspect ratio approximation (Sanford ,

1971).

The definition of the velocity errors as either depth-uniform ε and depth-varying ε′

decouples these two modes from each other for the analyses performed here. These errors

were used because measurements are either of the nearly depth-uniform electric field (using

stationary electrodes) or of the depth-varying signal from Jx (electrodes on vertically

profiling floats).

Full water column averaging was used to calculate v∗ and ε′ from the model solutions,

but in practice the use of averages over the full water column is not logistically practical.

Stationary electrodes measure Ex at one point in the vertical, or vertical profiling floats

are referenced to absolute velocity over some fraction of the water column (e.g. XCPs

are typically referenced with shipboard ADCPs within the upper 300 m). Thus, the 2D

perturbation of the Ex measured on the seafloor is not exactly the same as ε, but rather to

εbias = ε+ ε′(z = −H). Referencing vertical profilers over a fraction of the water column

can bias the velocities slightly, which was explicitly calculated by the biased quantity

ε′bias. The errors are smallest if the referencing occurs outside of the velocity jet, either for

εbias or ε′bias. For surface-intensified flow, instrumental errors are smaller if the reference

velocity or velocities are close to the seafloor.
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2.5.3 Extension to Baroclinic Flow

The velocity geometries used in the three cases all contain surface intensified oceanic flow.

Many oceanic flows are either surface or bottom intensified, with both barotropic and

baroclinic velocity components, so the two-layer geometry can be broadly applied. Purely

baroclinic flows are not directly analogous to these cases since they lack a barotropic

component.

For baroclinic flows the bottom sediment has less of an influence on the electric field,

for the electric currents are able to form closed circuits in the ocean. This is substantiated

by the lack of dependence on sediment thickness or sediment conductivity. The maximum

errors were found when the velocity occupies half of the water column, that is when the

vertical second moment of velocity is the largest. Higher modal structure, because it has

a smaller velocity second moment, may lead to smaller depth-varying velocity errors.

Internal tidal beams are the extreme case of purely baroclinic velocity, for they contain

high modes and can propagate at relatively steep angles but have no v. Internal waves at

near-inertial frequencies have nearly horizontal velocities, and the most common frequen-

cies that are less than
√

2N (N is the buoyancy frequency) propagate at angles less than

45◦ in the vertical. The high mode structure makes it likely that most electric currents

form closed circuits in the water column. The Ex induced by Fh will be most likely to

influence the 1D approximation, although the magnitude of the contribution from Fz is

expected to the same order but smaller.

The vertical scale of the barotropic mode H is always equal to or greater than the

vertical scale H ′ for baroclinic modes. Thus, the barotropic mode will always have a

larger aspect ratio. As the aspect ratio is found to govern the deviations from the 1D

approximation, baroclinic modes are necessarily flatter than barotropic scales and thus

are expected to be closer to the 1D approximation. Further study is needed to definitively

resolve the depth-varying velocity errors associated with high-mode baroclinic flow.
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2.5.4 Geophysical Constraints on Width Scales L and Lt

The model geometries were solved for a wide range of parameters, but realistically certain

scales will not be encountered in the ocean. Because the geometries of ocean velocity and

sediment were prescribed initially without recourse to their geophysical constraints, now

the realistic range of scales must be discussed.

Velocity Aspect Ratios The starting assumption of the theory developed by Sanford

(1971) was that ocean flow is much wider than it is deep, H/L � 1. The governing

vertical scale is the effective water depth D, which is often close to H for thin sediments,

whereas ocean flow can be as wide as ocean basins. As small aspect ratios are governed

by the 1D approximation, we only seek an upper limit for aspect ratios. For comparison

with observations, the quantity L is the full-width of the cosine jet, whereas the half-width

is more practical in observations. This discussion cannot account for all situations, but

gives guidelines that are generally applicable.

In the open oceans, the geostrophic balance is the primary dynamic equilibrium. The

barotropic Rossby radius RBT =
√
gH/|f | is the distance over which flow adjusts to

geostrophy (g is gravity, f = 2Ω sin(latitude) is the Coriolis parameter, and Ω is the

angular rotation rate of the earth). Even at high latitudes and in shallow water this scale

is greater than 200 km (H ≥ 100m, all latitudes), and so H/RBT � 1.

The shape of velocity for the finite-forcing analytic geometry remains idealized due

to the two-layer geometry and the vertically uniform velocity in the top layer. Although

large-scale open-ocean flow doesn’t typically have a step change in velocity, the shape is

representative of a broad range of surface- or bottom-intensified flows. One example in

the open ocean is how the Gulf Stream remains surface intensified when it enters the open

ocean, taking 100s of km before the velocity in the deep ocean gains appreciable transport

(Johns et al., 1995; Meinen et al., 2007) despite the seafloor deepening over 100 km along

its path. Other situations that resemble a step change in velocity are flows over sills,

in which case the bottom ocean layer is moving and the top is stationary, or two-layer

exchange flow (e.g. through the Straits of Gibraltar).
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The scale for baroclinic flow is RBC = cn/|f | where cn is the wave speed of the nth

baroclinic mode. This width scale is 10–30 km at high latitudes, and increases towards

the equator (Gill , 1982), so H/L can potentially reach a maximum of order 0.1 at high

latitudes although smaller values of 0.03 will typically be encountered. High mode struc-

ture or beams of internal waves are included in these phenomena, which have not been

directly addressed by the geometries considered. Baroclinic eddies formed by instability

often have a barotropic component. One example with small scales are eddies along the

shelf-break front north of Cape Hatteras (Churchill and Gawarkiewicz , 2008), which has

aspect ratios of ∆z/∆x = 250 m / 20–30 km = 8 × 10−3 – 1.25 × 10−2.

Another way of considering baroclinic aspect ratios is through the Burger number

S1/2 = NH/(fL), which is the ratio of water depth H to Taylor column height fL/N (N

is the buoyancy frequency). The value of S is typically less than 1, which implies that

for typical stratification N ≤ 3 × 10−3 s−1 and latitudes equatorward of 60◦, H/L is less

than 3 × 10−3 for baroclinic flow. For the near-shelf ocean off of Cape Hatteras values

for S are found to range from 2–100 (Savidge et al., 2007), although these assume that

H is the depth of the deep ocean (3 km) and that L is the width of the continental shelf

(40–80 km) or that H/L is 4 × 10−2 – 8 × 10−2.

A second class of scales can occur in situations where the velocity jet is bottom trapped:

this happens for dense flow over sills or through constrictions, such as the Denmark

Strait, the Strait of Gibraltar, or through sills that separate ocean basins. These scales

apply to both barotropic and baroclinic velocity components. The geometry of the sill

and hydraulic constraints give rise to different dynamical scalings at the topographic

restriction. Some examples of such conditions are: the Denmark Strait overflow with

∆z/∆x = 600 m / 50 km = 1.2 × 10−2, the Mediterranean outflow/Strait of Gibraltar

with 200–400 m / 20 km = 1−−2× 10−2, the Indonesian sills connecting the Pacific and

Indian Oceans with 200 m / 30–60 = 0.3 − −7 × 10−3 (Hautala et al., 2001), Windward

Passages into the Caribbean of 1000 m / 30 km = 3 × 10−2 (Wilson and Johns, 1997).

The maximum aspect ratio for these overflow regions is 0.03.

From these considerations an upper limit for the aspect ratio H/L is order 0.1 for
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baroclinic flows, with barotropic flows occurring below 0.03.

Topographic Aspect Ratios and Geological Scales A second set of geophysical

constraints are necessary to limit the realistic topographic slopes. The geometry used for

investigating topographic effects used independent scales for the width and height of the

seafloor, Lt and At (the width and half-height), instead of the more standard geologic

use of the slope angle θ = tan−1(∆z/∆x). A small region of steep slope will not effect

the EM solution, however, the slope has to have a significant vertical extent compared to

the water depth to appreciably change the EM response. The average slope angle of the

sinusoidal topography over −Lt/2 < x < Lt/2 is shown in Figure 2.15a for the parameter

space used for sloping topography.

Large-scale sloping topography are associated with continental margins (continental

slopes), submarine ridges, escarpments and island-arc chains. Pratson and Haxby (1996)

studied high-resolution bathymetry from 5 regions of the US continental margins. Typical

slopes at a scale of 0.1 km ranged from 5◦ for unstable margins (tectonically active or

salt-tectonized) to 8◦ for passive margins, although there are many small-scale features

with steeper slopes. Topography from Smith and Sandwell (1997) at a resolution of 3

km shows the steepest part of the continental slope at these same locations to be 5–

10◦. Although slope stability in the instantaneous sense for sedimented regions is larger

than these slopes (Pratson et al., 2007), these smaller angles are maintained by numerous

types of instabilities: spatially heterogeneous processes such as elevated pore pressure

or water outflow through sediments or by temporally infrequent events such as turbidity

currents (Lee et al., 2007) or earthquakes (Pratson and Haxby , 1996). Another hypothesis

for setting the slope of continental margins is the vertical propagation angle of the M2

internal tide (Cacchione et al., 2002), because critical reflection of internal waves generates

high turbulence at the seafloor that prevents slopes from growing steeper. This angle is

determined by the dispersion relation for internal waves and is close to the topographic

slope for 2 of the regions considered by Pratson and Haxby (1996).

Igneous topographic features will have different controls on their slope than sedimented

features. Examples of these are mid-ocean island chains, mid-ocean ridges, or escarpments
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at transform boundaries. The slope of topography around Hawaii has maxima of 8–12◦ and

median values of 4-5◦ (Smith and Sandwell , 1997). A second example is the Mendocino

Escarpment, a transform fault extending off the coast of California that has slopes of up

to 15◦ (Smith and Sandwell , 1997). The escarpment is nearly 2 km high and 10 km wide

on one side, with a mean slope of 11◦. For basaltic landforms there will be very thin or

non-existent sediment layers, so the parameter space reduces to that for thin ∆Hs with

little shorting through the sediment.

The two other geologic parameters, sediment thickness and relative sediment electrical

conductivity, can be constrained by their observed global values. Total sediment depths

range from 0 over newly formed oceanic crust to up to 10 km deep in old sedimentary

basins. Passive sedimented margins typically have sediment thicknesses of 4–8 km within

100 km of the continental slope, while subducting margins have thicknesses of 1–4 km

(Laske and Masters, 1997).

Sediment conductivity is largely constrained by porosity, as most oceanic sediments

contain saltwater in their pores. The simplification of the sediment column into a homoge-

neous region of uniform conductivity σs means that the apparent conductivity is vertically

weighted over the entire sediment column. In 1D cases the apparent conductivity is the

vertical average of the sediment conductivity, but for 2D solutions the surficial sediments

support strong Jx and are weighted more than the deep sediments in determining the

apparent conductivity. For 2D situations the sediment influence on v loses the physical

interpretation of the 1D approximation, as λ2D depends on horizontal length scales in

addition to the sediment properties.

Conductivities of specific sediment types and layers can vary from σr ∼ 0.05 (σs =

0.2 S m−1) for low-porosity consolidated silt to σr ∼ 0.5 (σs = 1.5 S m−1) for sandy

unconsolidated sediments. In general porosity and conductivity decreases with depth

in the sediment column because deeper sediments are more consolidated and undergo

chemical changes as they lithify into a more solid state. Thus, unless a sediment column is

unusually homogeneous its influence on the electric field through λ is through an apparent

conductivity that is a vertical weighting of the depth-varying conductivity. Unusually
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resistive sediment occurs if saltwater is displaced from interstitial pores by fresh water,

hydrocarbons, gas hydrates, or solid salt/evaporites. These alternative pore fluids all act

to make the sediment less conductive. Most of these features have a very heterogeneous

distribution in oceanic sediment, so their existence or lack thereof in a region of interest

will need to be independently verified.

2.5.5 Combined effect of velocity and topographic gradients

The geophysical constraints on scales of velocity and of topography are summarized in

Figure 2.15b. The boxes show the realistic parameter space assuming no interactions

between topography and velocity.

The analyses only extend the theory along each axis and don’t cover how gradients

in velocity and topography can interact. For small gradients the errors may be described

by linear addition, but in general topographic and velocity gradients will interact non-

linearly in terms of the 2D velocity errors. The errors from the two axes don’t add

linearly. A region with strong gradients of velocity and topography and thick sediment

(Cape Hatteras) is investigated in detail in the next chapter.

There are two limitations with the chosen geometries. The geometry of the finite

cosine jet, although close to the instantaneous shape of numerous ocean currents, will not

accurately represent broader ocean currents that have sharper edges. A central region of

uniform velocity will drive larger 2D perturbations at the edges than seen in the finite

cosine jet. A case in point is Jx from the sinusoidal velocity: even with very small aspect

ratios ψJ still retains an elliptical shape instead of becoming horizontal. It is not just the

immediate velocity gradient that influence Jx, but also the presence of neighboring strong

velocity jets.

The second limitation is that the constant velocity layer used in the geometry of sloping

topography is overly simplified. Not only does topography impose strong constraints on

geostrophic flow, but it also separates regimes of different dynamics (e.g. shelf circulation

and ocean-basin boundary currents). This choice of geometry was chosen to allow the

general investigation done here over a feasible number of parameters, but more realistically
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steep slopes tend to act as boundaries between different velocity regimes. Although it is

expected that small-scale flows over topography will have larger 2D perturbations than

resolved here, the dependence of errors on the non-dimensional scales will be similar.

The two processes that give rise to 2D electric field perturbations are summarized in

Figure 2.15b. The second and third geometries resolve velocity errors along the two axes,

along which rough velocity errors (both for ε and ε′) are summarized from the previous

discussion. The realistic region of geophysical scales is shown by the red, blue, and black

lines for barotropic, baroclinic, and topographic aspect ratios. The lower left corner is

where the 1D approximation is strictly valid.

Although the combined effect of gradients in velocity and topography has not been

investigated in this chapter, in the following chapter data from an extreme corner of the

parameter space is investigated in detail. This data was collected across the Gulf Stream

at Cape Hatteras, where velocity is strong and subject to sharp fronts and the continental

slope is unusually steep. The depth-varying velocity error is a few cm s−1 while the

depth-uniform velocity error is 0.1 m s−1. This implies that there are not strong non-

linear combination of perturbations caused by velocity gradients and sloping topography.

2.6 Conclusion

The influence of horizontal velocity gradients and sloping topography on motionally in-

duced electric fields is investigated with schematic geometries. In regions where there are

strong velocity gradients or steep topography, the calculation of velocity from measured

electric fields is subject to errors if the standard 1D approximation is used. The mag-

nitude and structure of these errors are quantified for three schematic ocean geometries

that are solved by analytic and numerical methods. All geometries are in a vertical plane

perpendicular to flow and describe a 2 layer ocean and a layer of sediment beneath.

The 1D approximation describes electric fields that are vertically uniform (Ex,1D) and

electric current densities divided by conductivity (Jx,1D(z)/σ) that have the same vertical

structure as velocity. This approximation is formally valid when the aspect ratio of height

to width H/L is much smaller than 1 and when topographic relief is small relative to to
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Figure 2.15: Parameter space for velocity scales and topography scales. (a) Mean slope
angles in degrees that correspond to Figure 2.12. (b) Schematic representation of the
resolved and realistic parameter space. The velocity aspect ratio is on the abscissa and the
topographic aspect ratio is on the ordinate, with the regions with velocity errors smaller
than indicated shown by hashes (for (Hs − H)/H ≤ 1 or ∆Hs/H < 1 and σr = 0.1).
The region of expected maximum aspect ratios are outlined for the barotropic and the
baroclinic velocity modes. For reference, the parameter space location of 5 stations in the
Gulf Stream at Cape Hatteras are also plotted (denoted CH), for the baroclinic component
(medium gray +) and the barotropic component (dark gray ×, two points are identical)
as discussed in chapter 3.
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the water depth (At/H � 1). As H/L and the topographic slope increase the electric

fields become two-dimensional. Two criteria are used to evaluate the electric field solu-

tions: the difference between the depth-uniform electric field Ex and that predicted by the

1D approximation Ex,1D, and the second moment in the vertical between Jx/σ and the

1D approximation Jx,1D/σ. The criteria correspond to the two ways of measuring oceanic

electric fields, whether from electrodes mounted on stationary or vertically-profiling plat-

forms, and also to the decomposition of velocity into barotropic and baroclinic modes.

For all geometries, the depth-uniform and depth-varying velocity errors depend most

strongly on the aspect ratio (H/L for velocity gradients or Hmid/Lt for topographic gra-

dients). Depth-uniform errors depend on the relative thickness of ocean and sediment

(Hs − H)/H and the electrical conductivity of the sediment relative to seawater σr. In

particular, their combination as λ1D determines the depth-uniform error, which is less

than 0.01 m s−1 for H/L ≤ 0.01 (λ1D)−4/3. Depth-varying errors, by contrast, depend

most on the thickness of the jet H ′/H and are insensitive to (Hs − H)/H and σr. For

aspect ratios smaller than 0.5–1 the magnitude of errors decrease exponentially with H/L.

General limitations on the largest aspect ratios possible comes from geophysical con-

straints on the velocity field or on topographic slopes. Rossby number and Burger number

arguments show that velocity gradients are limited to aspect ratios no greater than 0.1.

Barotropic flow generally is in the regime H/L ≤ 0.01, whereas baroclinic flows can be an

order of magnitude larger H/L ≤ 0.1. Maximum slope angles of large relief topography

are generally smaller than 10–15◦, which is equivalent to Hmid/Lt < 0.1–0.5 (for At/Hmid

of 1 – 0.2). Realistic values for sediment thicknesses are less than 10 km and more typically

2–4 km for heavily sedimented passive margins, while the apparent relative conductivity

of the sediment column has a smaller range of 0.05–0.5.

For realistic constraints on velocity aspect ratios, the maximum errors introduced by

a 1D interpretation of the 2D solution are less than 2–5% for sediment that is no thicker

than the water column and a relative conductivity of 0.1. Errors are smaller by a factor of

3 for a topographic slope of 10◦ with the same parameters. These analyses investigate the

effect of velocity gradients and topographic slopes independently, but in realistic situations
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both these two features may be present and will combine non-linearly.

This analysis has sought general results that are broadly applicable to many types

of oceanic electric field measurements. The results lead to specific recommendations for

incorporating into field experiments. Practically, a 2D interpretation of observations is too

complicated for most field programs, so the focus is on mitigating for 2D perturbations

in observations and for providing realistic (if unconfirmed) error estimates. Correcting

2D perturbations is the ideal goal, and though this is shown to be feasible in the next

section such procedures are too involved to be of operational utility. The velocity errors

that arise from 2D geometries depend on the platform used to collect measurements:

stationary sensors will be subject to a depth-uniform error, while horizontally drifting

instruments such as vertical profilers will include depth-varying errors.

The maximum velocity in the geometries is 1 m s−1, and in weaker flow regimes the

2D errors will be reduced proportionally. Instrumental errors of electric field instruments

have shown to be 1–2 cm s−1, so it is only in locations that have strong 2D perturbations

where the 2D velocity errors are the same magnitude or larger than instrument accuracy.

The general dependencies of these two types of errors on the surrounding spatial and

electrical scales are the direct result of this study. For a field program, these give a rule of

thumb for estimating which locations may have 2D signals. Such locations can be avoided

with prior planning, but if they must be sampled due to logistical or scientific reasons

then steps can be taken to estimate the 2D errors. With sufficient horizontal resolution of

the velocity field 2D errors can be calculated directly and removed in an iterative process.

The broad shape of velocity errors into dipole or quadrapole shapes that are surface-

and bottom-intensified allow ready identification of which locations are most likely to be

biased by 2D influences. For instance, at the center of a jet the depth-varying error is

positive in the surface layer and negative beneath.

The general treatment of 2D perturbations allows physical insight into their structure,

their magnitude, and their dependence on spatial scales and sediment electrical properties.

Although falling short of a general 3D model, this work extends the theory of motionally

induced electric fields and applies that insight for improving velocity calculations.
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Chapter 3

ELECTRIC FIELDS GENERATED NEAR CAPE HATTERAS

3.1 Introduction

This chapter investigates electric field measurements collected across the Gulf Stream SE

of Cape Hatteras, North Carolina, USA. A 1D interpretation of the electric fields shows

small but significant inconsistencies with the 1D approximation, which suggests higher

order effects may be present. The initial goal is to explain the observations through a

detailed study of the study region, which involves a number of varied studies. The use of

a high-resolution numerical model for calculating the electric fields and electric currents

allows the discussion to extend beyond what is directly observable in the data, including

corrections to the observed data that remove the 2D effects.

This chapter is organized as follows. After presenting the first order theory (section

3.2) these data show inconsistencies with the 1D theory (section 3.3). To explain these

discrepancies we investigate higher order terms that depend on horizontal gradients of

velocity and of topography (section 3.4). A numerical model is used for a higher resolution

analysis of a 2D transect across the Gulf Stream (section 3.5). The thickness and electrical

properties of the sediment are determined in section 3.6 by a synthesis of existing geological

observations. Magnetotelluric signals can generate electric fields in the ocean, but in

section 3.7 they are shown to be uncorrelated with the deviations from 1D theory. The

electric field is calculated numerically from the Gulf Stream velocity structure in section

3.8. The presence of meanders is shown to result in ambiguity in applying the first order

theory, and on the upper continental slope there are significant 2D perturbations of the

electric field (sections 3.9 and 3.10). The limitations of our analysis and the extension of

our results for regions other than Cape Hatteras are discussed in section 3.12. The last

section (3.13) summarizes the results.



58

3.2 Motionally Induced Electric Fields

Electric fields occur in the ocean because of the motion of conductive salt-water through

the earth’s magnetic field, a process generally called motional induction. The theory of

motionally induced electric fields in the ocean for time-dependent and 3–D currents and

bathymetry was developed by Sanford (1971), where the thin aspect ratio of the ocean

allows for great simplification from the 3D governing equations. Larsen (1968, 1971),

Chave and Luther (1990) and Tyler and Mysak (1995b) treat additional aspects of the

theory of motional induction.

The first order response is presented first, with the discussion of higher order terms

postponed until later. The dominant mode restricts electric currents and electric fields to

the vertical plane. This is a toroidal mode that describes, for example, electric currents

in one direction in the surface intensified oceanic flow with weaker return electric currents

in the slower water and sediment beneath.

3.2.1 First Order Theory

Sanford (1971) solved for a general solution that makes use of a number of assump-

tions, including: a horizontal ocean bottom (H) with small topographic perturbations (h,

h/H � 1), width scales (L) much larger than bottom depth (H/L � 1), predominantly

horizontal oceanic velocity (v), distant lateral boundaries, a layer of underlying sediment

that has a uniform electrical conductivity, and small time variations.

Although it is readily shown that time variations of the electric field generate induced

magnetic fields that are negligible compared to the earth’s magnetic field (Sanford , 1971;

Chave and Luther , 1990), a less evident process is inductive coupling between the ocean

and the conductive mantle. If large-scale water motion changes quickly in time (e.g. tidal

flow), the time variations induce electric currents in the mantle that act to reduce and delay

the oceanic electric field. Scaling Maxwell’s governing equations finds that the induction

parameter µσωL2 must be much less than 1 for mutual induction to be negligible (µ is

magnetic permeability and σ is electrical conductivity) (Sanford , 1971). Although the

appropriate length scales L2 for this problem are unclear, they can range from the water
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depth H to the velocity width-scale L to the depth of deep conductors in the earth. The

induction parameter depends on a combination of time-scales (frequency ω) and length

scales (L2). Generally, this condition is satisfied if the phase speed ω/L < 10 m s−1.

Analysis of a simplified earth geometry constrains large scale flow (H/L ≤ 1) to have

time-scales larger than 6 hours (Sanford , 1971). Inclusion of realistic earth conductivity

profiles (Chave and Luther , 1990) shows that mutual induction is minimal for periods

longer than 10 hours. To avoid complications caused by quickly varying large-scale flow,

we shall limit the analysis to oceanic flows with sub-tidal frequencies.

In the quasi-static limit, the horizontal electric field is

−Eh = ∇hφ = v × Fzk̂ − Jh/σ , (3.1)

where φ is electric potential, v is oceanic velocity, Fz is the vertical component of earth’s

magnetic field, k̂ is the vertical unit vector (pointing upward), σ is electrical conductivity,

and Jh is horizontal electric current density. The electromotive force v × Fzk̂ generates

the electric field and electric currents.

For the 1D approximation, it is assumed that Jh is solely caused by local water motion.

Thus the form of Jh/σ is (Sanford , 1971)

Jh

σ
= (v − v∗) × Fzk̂ + HOT , (3.2)

with

v∗ =
∫ 0

−H
σv dz′

/∫ 0

−Hs

σ dz′ . (3.3)

The seafloor is located at z = −H, and the bottom of the sediment layer is at z = −Hs.

Although the water conductivity σ varies in the vertical, the conductivity of the sediment

σs is assumed uniform. The quantity v∗ is the conductivity-weighted vertically-averaged

velocity. Higher order terms (HOT) are discussed later.

The equation 3.2 describes the principal toroidal mode. Water motion generates an

electric field through v × k̂Fz, which can drive electric currents in the ocean and the

sediment. The assumption of H/L� 1 means that the horizontal return segments for J

are much longer than the vertical paths. Because electrical resistance is proportional to
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path length, the vertical resistance is negligible and the horizontal resistance dominates.

This is the physical reason for vertically uniform electric fields, which is equal to v∗Fz.

The electric current density is the difference between the vertically uniform electric

field and that generated by local horizontal water motion scaled by σ, σFz(v(z) − v∗).

First we’ll consider cases where there is no bottom sediment, for which v∗ reduces to v

(the full reason for this is explained below). In the simple case where the ocean velocity is

entirely barotropic, v(z) = v, no electric currents flow. The potential generated by water

motion is exactly balanced by the oceanic electric field 3.1 at all depths. This situation

is analogous to the Hall effect, which describes the uniform electric potential across a

conductive strip that is moving in a uniform magnetic field. Electric currents arise when

a baroclinic velocity component is added, for instance if the ocean has a moving surface

layer with a motionless deep layer. In the surface layer the velocity is larger than v, so

v−v is greater than 0 and J is driven in one direction. The circuit is completed by return

electric currents flowing in the opposite direction in the lower layer, where v − v is less

than 0.

This first term is considered 1D because it only depends on the vertical dimension:

vertical variations of σ(v(z) − v∗) determine the electric current density, while a vertical

integral for v determines the absolute electric field.

The parameter v∗ corresponds physically to the vertically-uniform electric field. It is

linearly related to the vertically averaged velocity and is strongly influenced by subbottom

sediment. Conductive sediment beneath the ocean supports return electric currents that

reduce the oceanic electric potential. The horizontal electric current density integrated

from the bottom of conductive sediment (Hs) to the top of the water column needs to be

zero to conserve charge. This constraint yields the equation for v∗ in (3.3), which can be

further be simplified by performing a Reynolds decomposition of the water velocity and

conductivity in the vertical (where for the variable c, c indicates a vertical average and c′

indicates perturbations about the vertical mean). This yields

v∗ = v

(
1 + γ

1 + λ

)
, (3.4)
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where

λ =
∫ −H

−Hs

σ(z) dz′
/∫ 0

−H
σ(z) dz′ (3.5)

is the bottom conductance factor λ, and γ = σ′v′/ σ v is the vertical correlation of

conductivity and velocity.

The stronger factor is λ, which describes the amount of shorting through the bottom

sediment. The form that is consistent with (3.2) is

λ =
(Hs −H)σs

Hσ
, (3.6)

which parameterizes the sediment layer as having a uniform conductivity σs. For the

thin aspect ratio assumption, a vertically uniform electric field drives electric currents

through the sediment. In the presence of vertically-varying sediment conductivity, the

total conductance of the sediment (the numerator of (3.5)) is simply the vertical integral

of conductivity.

The electrical properties of sediment are poorly characterized for calculating λ, al-

though they can be estimated on a basin scale as shown in Flosadóttir et al. (1997); Tyler

et al. (1997). The bottom conductance factor can be understood physically by defining an

effective water depth D = H(1 + λ) that is the depth of water that has the same vertical

conductance as the ocean and sediment column.

The vertical correlation factor γ = σ′v′/ σ v describes the increase or reduction of v∗

caused by baroclinic correlations of conductivity and velocity. A layer of large velocity and

increased conductivity drives a larger electric current σ(v×Fzk̂) than if the water column

were uniformly conductive, which leads to a larger v∗ for the same v. Measurements of

temperature and salinity simultaneous with the apparent electric field (Jh/σ) allow direct

calculation of the vertical correlation. Corrections are also possible from hydrographic

data or from data archives (Luther and Chave, 1993) by computing representative profiles

of geostrophic velocity and electrical conductivity. Prior calculations of γ found it to have

less than a 10% influence (Chave and Luther , 1990; Szuts, 2004) and to be small outside

of strongly baroclinic flows.
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3.2.2 Application to Field Measurements

There are two ways to make measurements of the ambient electric field: 1) from a platform

at a fixed location or known horizontal velocity or 2) from a free-falling platform.

For a stationary instrument the local velocity in equation (3.1) (v × F ) cancels that

in the first term of Jh/σ (3.2), leaving only the electric field generated by v∗.

Profiling floats, however, move horizontally at the local and unknown water velocity.

The instrument’s motion through the earth’s magnetic field induces an additional potential

in the internal electronics that cancels the external source v × k̂Fz, leaving an apparent

electric field that depends on (3.2) Fz(v − v∗) and the higher order terms (Sanford et al.,

1978). The quantity v − v∗ is a relative velocity profile, and much like a geostrophic

velocity it can be made absolute by any absolute reference velocity. Possible sources for

reference velocities include shipboard ADCP (e.g. for XCPs, Girton et al., 2001), surface

GPS fixes (e.g. for EM-APEX, Sanford et al., 2007), or subsurface ranging (e.g. electrode-

equipped RAFOS floats, Szuts, 2004). Referencing with an independent absolute velocity

yields a vertical profile of absolute velocity. The offset is equivalent to v∗ plus higher order

terms.

3.3 Observations

During Leg 1 of R/V Endeavor cruise 239 a transect SE of Cape Hatteras was occupied

during 6 days in July, 1992 (Sanford et al., 1996). Among the data collected were 30 full

water column drops of the Absolute Velocity Profiler (AVP) at stations of depths between

500 m to 3500 m. The station positions are shown in Figure 3.1. The inshore 3 stations

were repeated 6–7 times each, and the 2 deeper stations 2–3 times each. The station

repeats were not exactly in the same location: the standard deviation of position was 200

m along the transect and 500-1000 perpendicular to the transect. Information about each

drop is listed in appendix B.1, as are the velocity and CTD profiles from each profile.
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Figure 3.1: Chart showing the study area: AVP stations (black dots), AVP transect (thick
solid black line), the Line 30 seismic transect (Hutchinson et al., 1995), the C4 current
meter (Berger et al., 1995), and the schematic north wall of the Gulf Stream (Savidge,
2004). Bottom depths are at 100, 500, 1000, 2000, 3000, and 4000 m.

3.3.1 Absolute Velocity Profiler (AVP)

The AVP is a free falling vertical profiler that rotates as it descends and ascends. Two pairs

of electrodes and an internal magnetometer measure the ambient electric and magnetic

fields. The electrodes measure an apparent electric field Eapp equivalent to Jh/σ in (3.2)

due to the tall and narrow shape of the instrument (Sanford et al., 1978). The instrument

rotation causes the ambient electric field to be sinusoidally modulated, allowing separation

of the weak oceanic signal (µV) from the larger but slowly varying electrode offset (mV).

The instrument is made negatively buoyant with weights suspended below it that cause

it to fall at 1 m s−1. The weights are dropped by a mechanical release when they hit the

seafloor, and the then positively buoyant instrument ascends at a velocity similar to its

descent.

An acoustic Doppler system measures the instrument’s velocity relative to the seafloor

when it is within 50–250 m of the bottom. The method is by calculating the Doppler

shift of acoustic signals that back-scatter from the seafloor as the instrument rotates. The

Doppler sensors are oriented at 30◦ from the vertical. Acoustic reflections are weak or
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non-existent when the bottom slope is steep, such as at the stations above the continental

slope. The maximum slope angle is 8–10◦ (Smith and Sandwell , 1997), but high resolution

topography (100 m Pratson and Haxby , 1996) show a large range of slope angles (4–15◦)

along similar continental margins due to rugosity of canyons, gullies, slumps, and other

small-scale features. The Doppler system ensonifies a circular area of the seafloor within

a 150 m radius of the AVPs horizontal location (assuming a flat bottom), so steep slopes

at a scales of 150 m or smaller can potentially degrade the Doppler velocities. Most of the

velocity in this location is parallel to topography, however, so any errors in the reference

velocity are in the velocity component perpendicular to the direction of the Gulf Stream.

Combining electric field measurements and acoustic Doppler velocities, the AVP de-

termines absolute velocities with a vertical resolution of 4 m. Additional sensors include

a CTD package and shear probes. The instrument is fully described in Sanford et al.

(1985).

3.3.2 1D Analysis

Processing of the observations uses 1D theory, that is

Eapparent = (vEF) × k̂Fz = (v − v∗) × k̂Fz . (3.7)

The vertical average of the offset between the apparent velocity (vEF) and the acoustic

Doppler absolute velocity determines v∗. Electrical conductivity from the CTD and the

relative velocity from the electrode-system allow γ to be readily calculated. Magnetic

field values are calculated from the IGRF10 field model prepared by the International

Association of Geomagnetism and Aeronautics (Macmillan et al., 2003).

The velocities are rotated into stream coordinates, where ŷ is directed downstream and

x̂ is directed offshore. The criterion used for rotating the velocities is that the correlation

between the cross-stream velocity u and conductivity be 0 (σ′u′ = 0) (see Table B.2).

For each profile, the quantities v, γ, and v∗ are calculated from the relative velocity

profile, the offset between vEF and the Doppler velocity, and the CTD data (see Table

B.2). The remaining factor in the 1D approximation (3.3) is λ, which is the slope between
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v(1 + γ) and v∗. If the 1D theory is accurate, all profiles should give a similar slope and

the best-fit line should go through the origin with no y-intercept.

For calculating λ, data from both up and down profiles are used. The values of v(1+γ)

and v∗ between up and down profiles are highly correlated, so the 2 data points have an

effective degrees of freedom that is between 1 ≤ Neff ≤ 2 and is close to 1. The effective

degrees of freedom is calculated at each station by (Bretherton et al., 1999)

Neff = Npairs +
1 + r2∆t

1 − r2∆t

Nprofiles (3.8)

where Npairs is the number of profile pairs, Nprofiles is the number of profiles, and r2∆t

is the correlation of v between down and up profiles. There is only a small increase in

Neff compared to Npairs (Table 3.3.2). Two profiles were removed from the 500 m station

(drops 414 and 427) because they were collected at water depths significantly different

from the other drops at that station. Additionally, stations avp424 and avp430 could not

be fully processed due to corrupted data.

Linear fits at each station are shown graphically in Figure 3.2 and numerically in Table

3.3.2. Although the 1D theory suggests that a proportionality constant (1+λ) is sufficient

for a fit, the fit at the 500 m station does not go through the origin (y0 = −0.10 ± 0.02)

despite being highly linear (r2 = 0.996). This result is not fully consistent with the 1D

approximation, and an explanation for this non-zero y-intercept is investigated in the

remainder of this paper. A fit that is forced to go through the original still recovers most

of the relationship, so the 1D approximation explains the majority of the relationship.

Note that there are 1 and 0 degrees of freedom in the fits at the 3000 and 3500 m stations,

so these stations lack enough statistical confidence for further analysis.

3.4 3D Theory

Before turning to further analyses, the general dependencies of higher order terms can

be examined in the analytic forms calculated by Sanford (1971) to motivate what may

be causing the deviations. These terms come from a perturbation analysis where the

seafloor varies slowly in height h(x) such that h/H � 1, and where the velocity gradients

are limited by the prior assumption that H/L � 1. His results are strictly valid for
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Figure 3.2: AVP observations of v∗ and v(1 + γ) with the fit at each station.

Table 3.1: Linear fits to the AVP data at each station. N is number of profiles and DOF
is the degrees of freedom in a linear fit.

station N DOF λ y0 (m s−1) r2

500 10 3.0 0.97±0.06 -0.10 ± 0.02 0.996

1000 14 5.1 0.42±0.04 0.007 ± 0.010 0.995

2000 12 4.1 0.37±0.04 -0.010± 0.005 0.996

3000 5 1 0.08±0.14 0.071 ±0.0009 0.976

3500 4 0 0.42±0.02 0.0009±0.0014 0.9999
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small aspect ratio flows and small topographic perturbations. The underlying physics

responsible for 2D effects should be the same when these assumptions are no longer met.

The full form for horizontal electric current density divided by conductivity is (Sanford ,

1971)

Jh

σ
=

1︷ ︸︸ ︷
(v
↑
|

depth-varying

− v∗) × Fzk̂ +

2︷ ︸︸ ︷
H(1 + λ)

2πD
∇× k̂

∞∫∫
−∞

∇ · Fzv
∗ ln(r) dx′ dy′ (3.9)

−∇h

{
1

H(1 + λ)

0∫
−H

k̂ · (v × F )z′ dz′ +

depth-varying︷ ︸︸ ︷
z∫

−H

k̂ · (v × F ) dz′
}

︸ ︷︷ ︸
3

+ O
(
H2

L2

)

with

r =
√

(x− x′)2 + (y − y′)2

D =H + ζ − h+
σs

σ
(Hs −H + h) (3.10)

v∗ =
∫ ζ

−H+h
σv dz′

/∫ ζ

−Hs

σ dz′ , (3.11)

where ζ is the surface elevation of the ocean, −H is the location of the seafloor, h is the

perturbation of water depth with h/H � 1, and other variables are defined earlier in

section 3.2. Unlike the discussion of the first order theory, now the variables H, Hs, σ

and σs are uniform in space. This change of notation results in different limits for vertical

integrals and thus in modified definitions for λ and D. Terms that vary vertically have

been denoted so — all other terms are vertically uniform or barotropic. Though there is

the vertical components Jz, we do not discuss it here because horizontal components are

sufficient for calculating horizontal velocity.

The first term in (3.9) was described earlier. The remaining terms (terms 2 and 3)

are called higher order terms (HOT) because they scale as H/L. Vertical electric current

density also scales as H/L.

A second mode of electric currents flow in the horizontal plane and are called poloidal.

This mode only exists in situations where there are gradients in the downstream direction
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and thus is a 3D effect. Term 2 describes a poloidal mode that is non-zero only if the

forcing quantity ∇ · Fzv
∗ is non-zero. The integral can be recast as a convolution in

wave-number space by taking the curl operator inside the double integral, in which case

the Fourier transform of ∇ ·Fzv
∗ is convoluted with the Fourier transform of the Green’s

Function 1/r. Assuming that gradients of Fz are much smaller than the divergence of v∗,

the forcing quantity can be written

∇ · v∗ = −∂ζ /∂t
D

− v∗

D
· ∇D �= 0 .

Electric currents are generated through this term due to changes in surface height with

time (∂ζ/∂t), flow across gradients of bathymetry (v∗ · ∇H), or flow across gradients in

bottom conductance (v∗ · (1 + λ)). Changing surface elevation is expected to be impor-

tant for tidal flow and high frequency waves (e.g. Kelvin waves), whereas for mesoscale

ocean circulation along-stream gradients of Fzv
∗ predominantly generate horizontal elec-

tric currents. These horizontal currents are called non-local currents (J∗), because they

are formed at a distance from the reference point. This mode generates magnetic fields

outside of the ocean that can be observed at inland stations (Filloux , 1967) or at satellite

altitude (Tyler et al., 2003).

The integrand is a convolution of a Green’s function (ln r) with a divergence (∇ ·
v∗Fz), so with increasing distance from where the divergence is non-zero, the curl of the

integral diminishes, decaying as 1/r for an integrand that is an unit impulse delta function.

Numerical modeling of the kernel (not shown) demonstrates that the horizontal structure

is a double dipole with two maxima and minima centered around the the location of non-

zero divergence, in agreement with the results of Chave and Luther (1990). This term

depends on the curl of an integral over all horizontal space, which makes it necessary

to calculate this term with a 3D approach. Mean ocean circulation is constrained to

flow along topography by conservation of vorticity, so v∗ · ∇hH is expected to be small.

Vorticity conservation can be broken in extremely energetic cases that are computationally

expensive to model, such as the Gulf Stream leaving the continental slope or baroclinic

instabilities of surface intensified jets. A secondarily expensive requirement is the high

resolution required to accurately resolve steep topography along ocean margins (of order
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10 km). Although non-local currents generated by subtidal flows is an interesting question,

it is beyond the scope of this article.

The third term of equation (3.9) depends on horizontal gradients of topography and

of the velocity field and contains both barotropic and baroclinic components. In this

form, horizontal gradients of H, λ, and v can all make this term non-zero, although these

gradients are already assumed small (H/L� 1) in the derivation. It is not clear that the

stronger gradients will retain the same form as presented here.

Term three describes the physical processes investigated in particular in this article.

The geometry at Cape Hatteras of a strong surface intensified jet flowing along steep

topography allows an analysis of the joint effect of gradients in velocity and topography,

unlike the analysis of Sz08 that separates the two effects.

The only depth-varying components of Jh/σ are the left side of the first term (involving

v) and the right side of the third term (involving
∫ z
−H); the remaining terms contribute a

depth-uniform offset. The first and third terms depend on local effects in the vertical, at

most within a distance a few times the water depth. Chave and Luther (1990) showed that

the vertical averages of the dominant mode have a horizontal weighting function that has

a width of a few times the water depth. Result from Sz08 indicate that velocity gradients

generate stronger perturbations from the 1D solution than topographic gradients, though

in both cases the 1D solution is accurate for length-scales larger than of 4–7 H.

3.4.1 Time-varying Ocean Velocity

Until now the discussion of theory has focused on quasi-static electric fields that are

generated by subtidal ocean velocity. If tidal and super-tidal flow occurs over basin-

wide scales the oceanic electromagnetic fields are modified by inductive coupling with

deep conductive layers in the earth. This is called mutual induction. Magnetic fields

generated by rapidly changing ocean velocities induce electric currents in the conductive

mantle (below a depth of 500 km), which in turn generate secondary magnetic fields that

induce electric currents in the ocean that diminish and delay the original changing ocean

electric fields. The scaling of this process requirements that the flow field be horizontally
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coherent over scales that are equivalent to the depth of the conductive mantle, otherwise

the magnetic fields do not penetrate to the mantle. This conductive layer is below a depth

of 500–1000 km, as indicated by compiled conductivity model (Kuvshinov et al., 2002)

and by satellite geomagnetic inversions (Kuvshinov and Olsen, 2006).

The deep electrical structure of the upper mantle, a poorly characterized feature, is

central for estimating the strength of mutual induction. Simultaneous E and B mea-

surements have indicated that mutual induction has an upper limit of 30% of the velocity

variance at tidal frequencies from data in the open North Pacific during project BEMPEX

(Filloux et al., 1991). That this region of the Pacific is characterized by weak barotropic

oceanic flow and strong large-scale atmospheric forcing suggests that the relative effects of

mutual induction would be expected to be larger here than in more energetic regimes with

smaller length-scales of variability. Comparison of data collected along the west coast of

America with tidal models find mutual induction effects less than 10% of the barotropic

tidal velocity (data from EMSLAB, Filloux et al., 1989 compared against the tidal model

of Schwiderski , 1979; data from Althaus et al., 2003 compared against the TPXO.3 tidal

model Egbert et al., 1994).

At Cape Hatteras, there are both tides and meanders of the Gulf Stream. The tidal

amplitude is small at Cape Hatteras, with a sea-surface surface height amplitude of 0.3–

0.4 m for the M2 tidal constituent and observed tidal velocities of 2–10 cm s−1 below

the Gulf Stream (from harmonic analysis of the current meter data described by Berger

et al., 1995). Because meanders of the Gulf Stream along the continental margin have

relatively small length scales (<100 km) and long periods (>3 days Savidge, 2004), mutual

induction is expected to be small for these features.

3.5 Model for Ocean Electrodynamics

To investigate the 2D transect with finer horizontal resolution than possible with the data,

we turn to numerical modelling. The full-complexity numerical simulation of the region

is solved with an an electromagnetic numerical model called the Model for Ocean Elec-

trodynamics (MOED, Tyler et al., 2004). MOED is a 3D, conservative, finite-difference
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model that solves Maxwell’s equations for electromagnetics in the frequency domain for

the electric and magnetic gauge potentials, given prescribed conductivity and velocity

fields. Validation of this model is demonstrated in Tyler et al. (2004) for 1D, 2D and 3D

cases that have analytical solutions. The 2D setup used here is evaluated in Sz08 against

a numerically-evaluated analytical solution.

The model is used to calculate electric fields given the detailed structure of the 2D

transect across the Gulf Stream and the continental margin. The prescribed oceanic

properties (conductivity and velocity) come from the station-averaged profiles of water

conductivity and velocity measured by the AVP. The velocities (both cross- and along-

stream) and conductivities in the water are based on the station-averaged vertical profiles

collected by the AVP, gridded to the model grid with a cubic scheme that makes first and

second derivatives continuous. The gridded conductivities and downstream velocities are

shown in Figures 3.3 and 3.12.

The model grid has a maximum resolution over the continental slope of ∆x = 50 m

(for 0 < x < 20 km) and over the upper water column of ∆z = 10 m (for −3000 < z < 0).

The grid spacing increases by 5% for each successive grid point in x and z away from

this region to reduce the number of grid points, reaching a maximum of ∆x = 200 m and

∆z = 40 m. The vertical resolution is 5 m in the upper 100 m in order to resolve the

continental shelf, which smoothly increases to 10 m beneath z = −100 m.

The conductivity interfaces in the model domain need to be smoothed for numerical

stability. For the water/sediment and sediment/crust interfaces the conductivity over 5

grid-points in the vertical was smoothed based on the exact interface depth according to

σ(zi) =
1
2

[
1 + sin

(
2π(zi − zinterface)

4∆z

)]
(σupper − σlower) + σlower (3.12)

where zi is within 2 grid points of the depth of the interface zinterface, ∆z is the vertical

grid-spacing, and σupper and σlower are the conductivities of the upper and lower layers.

A non-conductive crust underlies the sediment. Realistically, the crust has conductivities

of 0.0001 – 0.03 S m−1 (Chave et al., 1992; Simpson and Bahr , 2005), which is at least

an order of magnitude smaller than sediment conductivity and will not support a flow of

electric current that significantly alters the solution.
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The geometry of sediment layers is determined from a seismic transect very close to the

AVP transect, called Line 30, while sediment conductivity is determined from geophysical

data (see section 3.6). The bottom topography under Line 30, however, does not match

that underneath the AVP transect. The primary concern for prescribing geophysical

properties is internal consistency with the other inputs. For analysis of the electric fields

it is necessary to calculate vertical integrals over the water column, and so the exact value

of the water depth becomes important, even though the interface is smoothed. Because

the velocity is only constrained at 5 stations, a bottom topography that varies over smaller

scales will introduce small scale variability to the vertically-averaged quantities. For this

reason a smoothed topography is used instead of that present in the seismic lines or that

underneath the AVP transect.

Topography from Smith and Sandwell (1997) with a resolution of 3 km is first smoothed

with a 3 grid point by 3 grid point Gaussian smoothing kernel. A quadratic function is

fit to isobaths every 50 m using weighted least squares. The weights are calculated by

exp{−(r/τr)2}, where r is the distance from where the isobath cross the AVP transect and

τr is a length scale that is the larger of 3 km or 5 times the isobath value. This form of

weighting is chosen based on the result from Sz08 that the 1D approximation is accurate

when length scales are larger than 5–7 times the water depth. By extension, the oceanic

EF is expected to respond to the shape of an isobath over distances no larger than 5–7

times the depth of the isobath.

Both the velocities and the conductivities are further smoothed with a Gaussian filter

that is 3 points wide in the horizontal and 5 points wide in the vertical. The final

conductivity structure from the geophysical and AVP data, as gridded onto the model

domain, is shown in Figure 3.3.

The magnetic field is set to values calculated by the most recent International Ge-

omagnetic Reference Field (IGRF-10, which is definitive prior to 2000), Fz = −46, 860

and Fh = 22, 290, with a magnetic declination of -10.2◦ True. This magnetic field is

the dominant signal that comes from the earth’s core and mantle. The direction of the

Gulf Stream axis (toward 48◦ True) contains a significant component perpendicular to
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Figure 3.3: Conductivity input into MOED, based on station-averaged conductivity pro-
files and compiled geophysical data. The locations of the stations are shown by white
lines, and the presence of a relatively non-conductive diapir is seen near 20 km.

geomagnetic north, so there is an inductive contribution from the horizontal magnetic

field.

Small scale (< 500 km) perturbations due to lithospheric magnetic anomalies or time-

variable perturbations from ionospheric activity are not included in the geomagnetic field

used in the model. Both these secondary sources have magnitudes less than 1% of the

main field. Ionospheric perturbations are discussed in section 3.7, and the influence of

gradients of lithospheric magnetic anomalies is discussed further in section 3.11.

For the model implementation used for calculating magnetotelluric electric fields in

the ocean, the forcing term is no longer the motion of seawater but instead a downward

propagating plane wave in the atmosphere. Periods range from 10 s to 105 s. Unlike the

magnetostatic case where the electric potential φ is sufficient for describing the electro-

magnetic response, in these cases MOED also solves for the magnetic vector potential

A.
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3.6 Compilation of Geologic Data

The effect of a conductive sediment enters through λ, which physically is the ratio of

the sediment to oceanic conductance. This approach reduces the continuously varying

electrical properties of the seafloor into a homogeneous layer. While knowledge of the

sediment thickness from databases (Tucholke, 1986; Laske and Masters, 1997) can give

an estimate of this effect within 10%–50% (see Flosadóttir et al., 1997), the relation

between sediment thickness, layer lithology, and apparent seafloor conductance remains

only roughly known.

There is a large amount of geophysical observations collected along the east coast of

North America from which a more detailed estimate of the electrical conductivity of the

sediment can be constructed. The full sediment-column structure is extracted from deep

seismic transects (IPOD, Grow and Markl , 1977; Line 30, Hutchinson et al., 1995), whose

locations are shown in Figure 3.1. Hutchinson et al. (1995) performed a synthesis of

geophysical data along this margin and made a consistent database of reflector layers.

Their synthesis mapped reflecting surfaces in the sediment column (Poag and Ward ,

1993), which is called allostratigraphy. Although reflecting units are not defined by age,

in practice each layer has a characteristic age found by dating sediment cores.

The stratigraphic mapping only included geoacoustic data, therefore in situ electrical

conductivity was obtained from borehole resistivity logs in wells located along the margin.

This approach assumes that across-margin properties are uniform between the wells and

seismic lines. By age-correlating the conductivity in the wells to the layers in the geoa-

coustic transects (Figure 3.5), an average electrical conductivity is obtained for each layer.

Care is taken that the lithology of the seismic layer is similar to that in the seismic well,

although only a coarse 4-lithology mapping was performed by Hutchinson et al. (1996).

Multiple wells are used for obtaining a spatially averaged layer conductivity.

Because of the different depositional environments along the continental margin, ide-

ally wells in diverse locations would serve to constrain electrical properties. Wells that

sample the entire sediment column are only found on the shelf or upper slope, however,

so the conductivity of deeply buried sediments on the continental rise has to be estimated



75

-80 -75 -70
25

30

35

40

AVP

 IPOD

 Line 30

 B2 

 B3 

 34 

 05 

 50 
 52 

 54 

 61 

 63 

 71 
 72 

 73 

 5  

 7A 

 06 

 diapirs

FRD 

Longitude (°W)

La
tit

ud
e 

(°
N

)

Figure 3.4: Chart showing the wells used for constraining the layer conductivities (using
the labels in Table 3.6), the locations of salt diapirs, two seismic transects Line 30 and
IPOD, and the Fredericksburg (FRD) magnetic observatory.

from wells in shallower water. The wells are listed in Table 3.6, and their locations are

shown in Figure 3.4. The wells are translated to the seismic line by placing them at the

appropriate isobath (Figure 3.6). A few seismic layers have different conductivities on the

shelf and the rise because of different sedimentary composition. For these layers a linear

transition region occurs 20 km seaward of the 200 m isobath, which is −4 < x < 16 km

in Figure 3.6. The resulting conductivity structure is shown in Figure 3.3 (in which the

transition region is 0 < x < 20 km).

The topography beneath the AVP transect has maximum slopes of 12–16◦, with a

bimodal distribution centered at 4.5◦ and 10◦ (from topography by Smith and Sandwell ,

1997; Popenoe, 1985). This part of the continental slope has been eroded 10–20 of km

since the early Miocene, because of scouring by the Deep Western Boundary Current

(Popenoe, 1985). This history means that there is only a thin layer of recent (Holocene)
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Table 3.2: Wells used for the geophysical analysis. The locations are labeled in Figure 3.4
with the characters in parentheses in the first column.

well water well depth

name depth (m) (m) (age) reference

Shelf – mid-Slope Wells

ASP 5 (5) 250 310 Eocene Popenoe (1985)

ASP 7A (7A) 398 310 upp Pliocene Popenoe (1985)

AMCOR 6006 (06) 56 90 mid Miocene Popenoe (1985)

COST B2 (B2) 159 5704 upp Jurassic Mattick and Libby-French

(1988), Scholle et al. (1978)

COST B3 (B3) 819 3990 upp Jurassic Scholle et al. (1981)

COST G2 (G2) 83 6584 upp Triassic Arthur (1982)

ODP 1071 (71) 90 514 mid Miocene ODP Initial Reports, 174A

ODP 1072 (72) 98 457 upp Miocene ODP Initial Reports, 174A

ODP 1073 (73) 639 1303 Eocene ODP Initial Reports, 174A

mid-Slope – Rise Wells

ODP 905A (5A) 2700 910 mid Miocene ODP Initial Reports, 150

ODP 1050 (50) 2300 606 Albian ODP Initial Reports, 171B

ODP 1052 (52) 1345 685 Albian ODP Initial Reports, 171B

ODP 1054 (54) 1294 200 mid Pliocene ODP Initial Reports, 172

ODP 1061 (61) 4047 361 mid Pliocene ODP Initial Reports, 172

ODP 1063 (63) 4584 418 mid Pliocene ODP Initial Reports, 172

DSDP 534 (34) 4973 1667 upp Jurassic DSDP Initial Reports, 76
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sediments, and that near-surface sediments are probably more lithified and cemented than

their current depth suggests. They are likely less electrically conductive than the near-

surface sediments on the shelf.

Two additional geologic features can appreciably influence the sediment’s total con-

ductance: gas hydrates and salt diapirs.

Gas hydrates are ice-like complexes of gases and water that can form at high pressures

and cold temperature and are generally found within the upper 1000 m of the sediment

column. By displacing the conductive seawater that occupies sediment’s pore fluids, gas

hydrates have much lower electrical conductivity. They can be present in various concen-

trations in the sediment, however, and even moderate concentrations do not necessarily

form a electrically impermeable layer (Evans, 2007). Through interpreting existing seismic

lines, Dillon et al. (1994) calculates the distribution and thickness of hydrates along the

east North American margin. They find no evidence of hydrates along the Cape Hatteras

transect in water shallower than 3000 m, although there is a bottom simulating reflector

500-700 m below the seafloor at the 3500 m station. More extensive hydrates are found

south of Cape Hatteras in the Carolina sedimentary trough.

Deposits of salt in sedimentary layers are electrically resistive. Along the eastern

North American margin they formed in the shallow seas of the rift between the Americas

and Europe and Africa. As the sedimentary prism grew the salt deposits were unevenly

pressurized. Under high pressures salt is plastic, unlike rigid consolidated sediment, and if

loaded differentially it can be squeezed out of its original bedding layer into vertical plumes

(diapirs) or more complicated structures. A line of diapirs is present along the 3000 m

isobath south of Cape Hatteras in the Carolina Trough (Figure 3.4). This line corresponds

to the seaward extent of the post-rift salt deposit that was subsequently mobilized by

the creation of a sedimentary prism. Relic subsidence faults in the sedimentary prism

(Popenoe, 1985) indicate that the diapirs are no longer active. The diameters of diapirs

are less than 25 km, and most of them in this region do not reach the surface. Diapirs

are present in both the IPOD and the Line 30 seismic transects, and the 3000 m AVP

station is located along their line of occurrence. Their conductivity and seismic signatures
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are seen near x = 20 km in Figures 3.3 and 3.6. Unfortunately, there is not enough

statistical confidence at the 3000 m AVP station to show whether a reduction of sediment

conductance is observed due to the presence of diapirs.

Although diapirs are electrically resistive, they are thermally conductive and can gen-

erate fluid flow in surrounding sediment due to thermal gradients. Such mechanisms are

observed in diapirs that reach close to the sediment surface (Hornbach et al., 2005). It may

also be possible for pore fluids close to diapirs to have elevated salinities. Though these

questions are important for determining the electrical conductivity structure of diapirs,

they are also questions that are poorly understood in the geophysics community.

In this study high resolution geophysical data are used to obtain a best estimate of the

sediment electrical properties, but for researchers at other locations that do not have the

necessary geophysical solutions there are other lower resolution sources for this geologic

data. Laske and Masters (1997) compiled a global database of sediment thickness with

a 1◦ × 1◦ resolution, such as is useful for modelling electromagnetic fields on a global

scale (Flosadóttir et al., 1997; Tyler et al., 2003). In order to calculate the sediment

conductance, however, it is also necessary to know the effective sediment conductivity of

the entire sediment column. Borehole resistivity traces were used for this purpose here.

In other locations that lack nearby wells, this quantity can be estimated in a gross fashion

after Flosadóttir et al. (1997) or Everett et al. (1999).

3.7 Magnetotelluric Analysis

High frequency fluctuations of the earth’s magnetic field due to ionospheric disturbances

that are globally coherent can also generate electric currents in the ocean. The field of

passive magnetotellurics takes advantage of these fields to invert for the deep conduc-

tivity structure of the earth. Generally speaking, it is possible to remove ionospheric

contamination using magnetotelluric transfer functions from remote observations (Chave

and Thomson, 1989; Jones et al., 1989). There is increasing recognition that the oceanic

signal can obscure the earth or ionospheric signals (Kuvshinov et al., 2002; Sabaka et al.,

2004), but in little effort has been made to extract magnetotelluric signals from horizontal
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electric field profiles in the ocean.

Electric perturbations in the ionosphere radiate downward and can generate electric

currents on land or in the ocean that are called magnetotelluric (MT) signals. Large

disturbances are called ionospheric storms and are caused by solar winds. The AVP data

was collected during a magnetically quiet time when the global magnetic disturbance

index Kp was 1–3 (5–9 are perturbed values). Ionospheric activity is strongest at high

latitudes. The magnitude of perturbations is described by the Dst index, which has a

maxima of −200 nT during strong ionospheric storms.

There is also a background magnetic field variations due to electric currents in the

ionosphere being fixed to the daylight side of the earth — these are called “quiet day”

perturbations. In contrast to ionospheric storms, quiet day perturbations are strongest

near the ecliptic equator.

An example of the observed magnetic field variations at the Fredericksburg, Virginia,

USA (FRD) observatory is shown in Figure 3.7 for data recording during the year 1992.

The plotted quantity is the square-root of the energy spectra integrated from the lowest

frequency. At the lowest frequency the variance is 0, and at the Nyquist frequency (data is

sampled every minute) the square root of the total variance is recovered. The component

directed towards magnetic north (red) has the most variance). Most of the variance is

at daily frequencies and its sub-harmonics, although 25–50% is broadly spread out over

frequencies lower than once per day. There is negligeable variance at periods larger than

5 hours (5 × 10−5 Hz). Electric fields in the ocean can by misinterpreted as due to an

oceanic source if they are strong enough.

3.7.1 Transfer Functions

The large-scale coherence of magnetotelluric perturbations suggests that it is possible

to estimate the induced electric fields in the ocean from the magnetic field observations

at FRD (75 km away from the AVP stations). This approach assumes that: (1) time-

variations of the magnetic field at FRD are due to downward propagating waves that are

the same as those entering the ocean off-shore of Cape Hatteras, and (2) the geometry of
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Figure 3.7: Cumulative integral of the magnetic field spectra from f = 0. The square-
root of the total variance is recovered at the right. The components are north (red), east
(blue), and down (black) (in True directions).

the continent/ocean margin can be represented as a 2D structure.

Modeling these disturbances as plane waves propagating downward into a homogeneous

semi-infinite ocean (e.g., Griffiths, 1999) shows that electric currents equivalent to water

velocities of 0.005 m s−1 would be generated in the ocean based on observations at FRD

(not shown). Close to ocean/continent boundaries, however, there is the potential for

significant perturbations of the expected signal due to the large horizontal contrast in

electrical properties. Historically this phenomena is called the “coast effect” (Dosso and

Meng , 1992; Santos et al., 2001).

Electromagnetic waves have a characteristic skin-depth in conductive medium of

δ =
√

2/µσω , (3.13)

where µ is the magnetic permeability and ω = 2πf is the frequency in radians s−1. This

quantity is how far a wave penetrates into a medium of conductivity σ before being reduced

by a factor of e−1. Skin depths in the ocean are greater than 2500 m for periods less than

0.01 Hz, which is close to the observatory sampling frequency (120 s). There is only

appreciable variance in B at periods larger than a few hours (δ ≥ 15 km for T ≥ 1 hour),

so the ocean magnetotelluric signal is expected to be nearly barotropic at this latitude.

By applying MOED to a two-dimensional transect from FRD to the deep ocean, the

magnetic field at FRD and the oceanic electric field at one point in space can be extracted
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for a given frequency. Their relative amplitude and phase is a transfer function that varies

with frequency

Ex =Zxy(f)By/µ0 B-polarization

Ey =Zyx(f)Bx/µ0 E-polarization . (3.14)

The transfer function Z(f) has units of Ω, and here the magnetic field B(t) allows for

time variations on top of the main field component F . These relationships between E

and B are the special case of a 2D earth where x̂ and ŷ are aligned with the transect

(Simpson and Bahr , 2005).

The 2D transect is a simplification of the 3D ocean–continent margin that meets at

an angle at Cape Hatteras. This reduction to a 2D transect is valid at frequencies for

which a spatial averaging of the 3D topography over the horizontal scale of the skin depth

corresponds to the 2D geometry. Most of the variance is at periods greater than 6 hours,

for which the skin depth in the ocean is greater than 40 km. A transfer function is

obtained for estimating the magnetotelluric oceanic electric field by calculating Z over

the full frequency band.

3.7.2 Magnetotelluric Results

The 2D geometry for magnetotelluric analysis is presented in Figure 3.8. Near-surface

(z > −10 km) structure is taken from the IPOD deep seismic line and the geophysical

compilation of electric properties discussed earlier, where uniform oceanic and sediment

conductivities are used for simplicity. Magnetotelluric studies in the same region are used

primarily for the complex lithospheric structure (Ogawa et al., 1996). Deeper electrical

properties are compiled from estimates by Santos et al. (2001) for the surface to mid-

depth continental conductivity and by Chave and Luther (1990) for the mid-depth oceanic

conductivity, and from global satellite inversions by Kuvshinov et al. (2002); Kuvshinov

and Olsen (2006) for the deep earth conductivity.

MOED is used to calculate electric fields induced in the ocean and earth by downward

propagating electromagnetic waves. There are two modes of electric currents: the B-

polarization mode denotes magnetic fields that are parallel to the coastline (perpendicular
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Figure 3.8: 2D Geometry used for calculating transfer functions from the magnetic field
at the Fredericksburg, VA magnetic observatory (FRD) to the electric field at an AVP
station. The vertical scale changes from linear to logarithmic at a depth of 10 km.

to the transect, By) that generate electric currents that flow in the vertical plane of the

transect (Jx, Jz); and the E-polarization mode denotes electric fields and electric currents

that are oriented parallel to the coastline (perpendicular to the transect, Ey, Jy) with

corresponding magnetic fields in the plane of the transect (Bx, Bz). The correlation

between Fh and Fz at FRD gives an indication of how much variance is described by a

coherent plane-wave. The correlation coefficient is 0.27 for |r2| calculated between Fx+iFy

and Fz in the time domain, that is 15% of the magnetic field variance is described by a

plane wave approximation.

The magnetic field at FRD is readily extracted from the output. The transfer functions

converts from the observatory measurements to an oceanic electric field as a function of

frequency. In analogy to the analysis of motionally induced horizontal electric fields, two

components for the oceanic electric field are considered: a vertically averaged horizontal

electric field, and the electric field at one point in the vertical. The vertically-averaged

electric field is for comparison with the barotropic velocity, and the point electric field is

for comparison with the vertically-varying electric current density. Because MT-induced

electric fields decay in amplitude as they propagate into the ocean, a depth of z = −1000

m is chosen to be representative of this component. For the low frequencies contained in

the spectrum of magnetic field at FRD, the skin-depth is of the order of the water depth.
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Clearly, when there is appreciable high-frequency variance in the magnetic field, such as

during an ionospheric storm, this analysis will not resolve the large electric fields induced

near the surface of the ocean. The transfer functions obtained are shown in Figure 3.9.

Next the data are tested for noise from magnetotelluric sources. Based on the trans-

fer functions calculated above and the magnetic fields observed at FRD, it is possible

to calculate expected electric fields from the magnetic fields measured at the magnetic

observatory FRD. Time series of vertically averaged electric field are shown in Figure

3.10 (left panel) as extracted for the AVP stations at the 500 m and 2000 m isobaths.

The magnetotelluric-induced Ex/Fz is larger in shallower water, with estimated signal

strengths of up to 0.3 m s−1.

If there are magnetotellurically induced electric fields in the ocean, then there will be

noise in the electric fields measured by the AVP. Because the oceanic motional induction

is the dominant signal at Cape Hatteras, the magnetotelluric signal will appear as the
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of v∗ against Ex,MT/Fz for all AVP profiles, for the downstream component v. The
least-squares fit is shown (solid line), for which the correlation coefficient r2 is 0.002.
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residual of v∗ to the 1D linear fits (Figure 3.2). The correlation of AVP residuals with the

MT-induced apparent velocity is shown in Figure 3.10b. The magnitude of the residuals is

0.02–0.03 m s−1, whereas the magnitude of the magnetotellurically induced electric fields

is 0.05 m s−1 at 2000 m and 0.2-0.3 m s−1 at 500 m. For both the u and v components

of velocity there is no statistical significance between the MT-derived quantity and the

residual in v∗ (right panel, r2 < 0.03).

For comparison with the energy of oceanic velocity, the spectra of MT-induced electric

fields are shown (Figure 3.11) against spectra from current meters located nearby as part

of a separate study (Berger et al., 1995; Savidge, 2004). Only the spectra for the depth-

uniform MT-derived velocities is shown. The spectra for MT-derived velocity at z = −300

m is nearly the same as the depth-uniform velocity, because there is so little variance in

the magnetic field at the high frequencies where the signal’s skin depth is less than the

water depth. The E-polarization mode (green line) has larger energy at periods larger

than a few hours than the B-polarization (black line). The spectrum from a current

meter mooring deployed at z = −1000 m along the 2000 m isobath 50 km SE of the AVP

transect is shown for the along-slope component of velocity (blue) and the across-slope

component (red), where tides have been filtered out. Whereas the MT signal is white

(during a magnetically quiet period), the oceanic signal is red. At periods longer than a

day the oceanic signal dominates: variance is 1.2 m2s−2 for ocean velocity and 0.01 m2s−2

for MT-derived equivalent velocities. The MT signal dominates by a similar magnitude (a

factor of 100) for periods less than a day for these data, but note that tidal signals have

been removed from the current meter velocities by low-pass filtering.

3.8 2D Gulf Stream Transect: Results

Having determined the sediment electrical properties and that magnetotelluric signals are

relatively small, we now turn to the electric field results based on the 2D transect described

in section 3.5. The first question is whether the AVP measurements are reproduced with

the numerical model. The model is forced with the average velocity profile at each station,

so the question is initially considered in the time-averaged sense.
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The prescribed velocity is shown in Figure 3.12 as gridded to the model grid for the

downstream velocity component. The rotation angle is determined so that σ′u′/σ u =

γx = 0, where x̂ is in the cross stream direction (positive offshore). The rotation angle

defined by this method is within a few degrees of the direction of vertically integrated

velocity. By definition the model v (solid black line) fits the AVP data (*) at the 5

stations (top panel). The 5 AVP stations are indicated by vertical lines, and correspond

from left to right to the stations at the 500 m, 1000 m, 2000 m, 3000 m, and 3500 m

isobaths. The velocity is gridded with a cubic interpolation technique that maintains a

continuous second derivative between stations. Outside of the first and last stations, the

velocity is set to go to 0, to define a bounded Gulf Stream.

There is a lack of observations in the literature to constrain the Gulf Stream velocity

structure inshore of 500 m, which is seen later to strongly influence the results. The

station-averaged velocities show a maximum v at the 500 m isobath, and though the

1000 and 2000 m isobath stations resolve the seaward structure of this maximum the

landward structure remains unresolved. The depth of the Gulf Stream, defined as the
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Figure 3.12: Velocity input into MOED. (a) The depth-averaged or barotropic velocity v
at the central position (black) and shifted by ±1 km to either side (gray), with the AVP-
calculated v (red ∗). (b) The gridded velocity (color) based on the 5 station-averaged
velocity profiles (vertical black lines).

depth where the velocity direction changes from the overlying waters, is 400–500 m along

the continental slope and deepens to 1000 m over the continental rise. The Gulf Stream

is not expected to be able to extend onto the continental shelf past the shelfbreak (at a

depth of 100 m), so the inshore limit of the Gulf Stream is set at the 250 m isobath, 3 km

inshore of the 500 m station and 6 km seaward of the shelfbreak. The horizontal velocity

structure is only constrained at 7 locations: the 5 AVP stations and the two locations

where the velocity goes to 0 (at x = 2 km and x = 150 km).

The AVP velocity is calculated based on a 1D interpretation of the measured electric

field, so it is only as accurate to the extent that the 1D approximation is accurate. The

validity of this assumption is returned to in section 3.10.

To be able to compare the calculated electric field with the AVP observations it is

necessary to define v∗ from the model output:

v∗2D =
1

Fz(z2 − z1)

z2∫
z1

Ex dz , (3.15)

for a depth range z1 ≤ z ≤ z2. This quantity includes 2D effects that arise from gradients

in velocity and topography.
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The quantity v∗ is calculated from the AVP data over the depth range for which the

acoustic Doppler system provides velocities. The analogous quantity from the model is

obtained by setting z1(x) = H(x) + 50 m and z2(x) = H(x) + 250 m, denoted v∗2D,AVP.

More generally, v∗2D can be calculated over the full water column (z1 = H(x) and z2 = 0)

to obtain a value that is not instrument specific, denoted v∗2D. Most instruments determine

v∗ over a limited depth range (e.g. cables are on the seafloor, XCPs are referenced with

surface shipboard ADCPs, etc.), however, so the errors discussed for the AVP will not be

exactly the same as for different instruments.

A second point of comparison is with the v∗ expected from the 1D approximation.

This uses the 1D form of λ from (3.6), λ1D, to calculate

v1D ≡ v
1 + γ

1 + λ1D
. (3.16)

The horizontal electric field Ex (Figure 3.13b) is shown over the whole domain. Along

the steep continental slope Ex is not vertically uniform — the strong field in the water

doesn’t penetrate to the bottom of the sediment — so this is a location where there are

perturbations from the 1D approximation. The deviation from the 1D approximation is

most readily seen by comparing v∗2D,AVP (red) against v1D (blue) in Figure 3.13a. It is

only on the upper continental shelf that differences are significant. The AVP data are

within 0.02 m s−1 of the calculated results at all stations seaward of the 1000 m isobath,

but the shallowest station disagrees by 0.05 m s−1 (17%). Although the numerical model

resolves any 2D effects, there are two other possible sources of the disagreement. First,

the velocity inshore of the 500 m isobath is unknown. If the maximum in v is further

inshore, then v∗2D,AVP would increase at this station. Second, the station-averaged v(1+γ)

measured by the AVP is not necessarily equal to the average of the two components v and

1 + γ used to initialize the model.

MOED is initialized with u, v, Fz, Fh and sediment conductivity structure, each of

which is responsible for separate complexities in comparison with the 1D approximation.

The dominant 1D signal comes from downstream velocity (v) and the vertical magnetic

field (Fz). Secondary signals arise from induction by the horizontal magnetic field (vh ×
Fh = (uFy − vFx)k̂) and from the detailed sediment structure that contradicts the 1D



91

0

0.2

0.4

ve
l (

m
/s

)

x (km)

de
pt

h 
(k

m
)

 

 

Ex

0 10 20 50 150
-10

-5

0

E
x 

( 
μ

V
/m

)
-10

0

10

a)

b)

v*–
1D

v*–

v*–
AVP
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scale at x = 22.5 km.
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assumption of a uniformly conductive sediment column.

How much of Ex comes from each of these source? By removing some of these forcing

terms their contribution to the full solution can be quantified. In particular, the solution

was calculated for the following cases in addition to the standard case of full forcing: 1)

just v and Fz with full sediment structure, 2) just Fh with u and v and full sediment

structure, and 3) no sediment structure (uniform σs = 0.583 S m−1) but forcing from

u, v, Fz and Fh. The error is considered relative to the 1D approximation for the full

initialization, which breaks up the 2D perturbations into the separate components. The

2D error is defined by

εj = v∗2D,j − v∗1D (3.17)

This is the magnitude of the correction to the 1D approximation v∗1D, where j stands

for the 3 cases of reduced forcing complexity. This equation is in terms of v∗, however,

so to obtain equivalent errors in the barotropic velocity it is necessary to multiply by

(1 + λ)/(1 + γ). As this procedure is not necessarily well-defined it is postponed until

later.

The quantities v∗2D and εj for the full forcing and the 3 cases above are presented in

Figure 3.14a. The expected v∗1D from the 1D approximation (thick gray line) goes to 0 at

the inshore extent of velocity (x = 2 km). On the continental slope v∗2D are larger than

v∗1D for all cases that include induction due to Fz, with negative electric fields occurring

over the upper continental shelf up to the shelfbreak. The negative electric field is cause

by vertical spreading of the electric potential in the thick underlying sediments. The

signal from v and Fz (case 2, red line) contains almost all of the deviation from the 1D

approximation. The magnitude of induction from Fh (blue line) is less than 0.001 m s−1.

The full detail sediment structure results in a few cm s−1 correction to the case of

homogeneous sediments. The value of the uniform sediment conductivity (0.583 S m−1)

was chosen so that the fractional deviation of v∗2D,3 from the full solution v∗2D integrates to

0 over 60 < x < 120 km, that is the region over which the 2D perturbations are smallest.

This uniform value of σs yields a larger v∗ (green line) on the upper continental slope

(2 < x < 7.5 km) compared with the full resolution case and a smaller value on the
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Figure 3.14: (a) v∗ calculated for the full complexity case (thick black line), the three
reduced complexity cases (u and Fz, red; u, v and Fh, blue; uniform conductivity sediment,
green), and the 1D approximation v∗1D (thick gray line). (b) The difference εj between
the v∗ shown in (a) and v1D. The 5 station positions are denoted by vertical gray lines,
and there is a scale break at x = 22.5 km.

lower continental slope and upper continental rise (7.5 < x < 25 km). In other words,

uniform sediment conductivity results in decreased sediment shorting of Ex on the upper

continental slope and increased shorting on the lower continental slope. The negative v∗

inshore of x = 2 km attenuates exponentially approaching the shelf. The decay is twice

as fast when the sediment is fully resolved compared with the uniform conductivity case,

because of the presence of conductive layers (σs = 1.5 S m−1) of coarse sand near the top

of the sediment column on the upper continental slope and shelf.

The fully initialized run (thick black line) and the less complete runs all deviate from

the 1D approximation (Figure 3.14b) on the upper slope (2.5 < x < 10), with errors of

0.05 m s−1 at the 500 m station (x = 5 km). Most of the 2D perturbations are generated

by v and Fz (red line). The contribution from Fh is small, it is less than 0.01 m s−1 over

the continental slope and decreases to less than 0.001 m s−1 at and seaward of the 2000 m

isobath. All of the cases with reduced forcing deviate by less than 0.01 m s−1 from the fully

initialized v∗2D and from v∗1D at locations seaward of the 1000 m isobath. Larger deviations

from v∗1D occur on the upper continental slope. The velocity structure inshore of the 500

m isobath is unknown, but if the sharp velocity front is realistic, the deviations can reach
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0.1 m s−1 right where the velocity goes to 0. The case of a uniform sediment conductance

introduces the largest differences with the full resolution case, a few cm s−1 on the upper

slope. The choice of σs for the uniform sediment case (green) accurately reproduces the

2D electric field in deep water (20 < x < 150), but this uniform value yields an effective

sediment conductance that is too small on the upper continental slope compared with

the full-resolution sediment. The 5% increase in v∗ at the 500 m isobath implies that

the apparent conductivity of upper continental slope sediment is 20% larger (σs = 0.72

S m−1). The 20% increase in apparent conductance is partly generated by 2D effects,

but it is not possible to extract this contribution when the 1D sediment parameterization

is applied. The ambiguity of defining an appropriate average sediment conductivity σs

based on the 1D simplification is reduced by fully resolving the conductivity structure of

the sediment.

A comparison of the model output with the AVP data is best performed at the locations

where the AVP data constrain the model. Following (3.4), v(1 + γ) is related to v∗ in

a 1D sense by a slope of 1 + λ and are plotted in Figure 3.15. The line that describes

v∗2D,AVP and v(1+γ) from the model (Figure 3.15a) starts out at the origin at the inshore

edge, v∗2D,AVP becomes negative while v = 0, and then both become positive and proceed

through the maximum at the 500 m isobath, the local minimum at the 2000 m isobath,

and finally the local maximum at the 3000 m isobath. The value from the model at each

station is close to the average of the AVP data, but the data have large ranges at each

station compared with the model. To perform a more accurate comparison, it is necessary

to include time-variations of the Gulf Stream in the model analysis.

3.9 Gulf Stream Meandering

The model results presented in the previous section are based on a time-invariant velocity

structure, which is a major simplification of the Gulf Stream.

Along the path of the Gulf Stream, Cape Hatteras is the boundary between the

topography-trapped regime to the SW and the freely-meandering regime to the NE. The

meander characteristics are quite different in the two regions: to the SW the strongest
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Figure 3.15: Graphs v(1 + γ) against v∗. (a) The AVP data (dots for individual profiles;
solid line, linear fit; dashed line, extension of linear fit to x = 0) and the values of v(1+γ)
and v∗2D,AVP from MOED (black line; large black dots at the 500, 1000, and 2000 m
stations from top to bottom). AVP Data at the 500 m station is shown in red, at the
1000 m station in green, and at the 2000 m station in blue. (b) Linear fits from the model
results at the three stations with schematic meanders: a shift of 0 m (black line, large
colored dots), shifts of ±125, ±250, ±500 and ±1000 m (small colored dots), linear fits at
each station (solid line; extension to 0 as dashed line). The color coding is the same as in
(a).
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meanders have wavelengths of 180–380 km, periods of 3–8 days, and amplitudes of 50 km

(Miller , 1994; Savidge, 2004), while to the NE long period disturbances grow (T > 10

days, Watts et al., 1995), meander amplitude increase to 100 km, and the jet’s transport

becomes increasingly barotropic (Johns et al., 1995; Meinen et al., 2007). The separation

region at Cape Hatteras is characterized by a decay of small meanders upstream and the

growth of large meanders downstream (Savidge, 2004). The meander amplitudes of the

north wall decrease to a minimum of 10 km at Cape Hatteras (Olson et al., 1983; Tracey

and Watts, 1986).

Despite the minimum in meander amplitude, meanders have been observed here and

eddies can transit past Cape Hatteras (Glenn and Ebbesmeyer , 1994). The AVP stations

on the continental slope show a positive correlation between velocity and temperature at

constant depth levels. This implies that if the center of the Gulf Stream (near x = 45 km)

moves inshore and velocity increases that isotherms deepen and temperature rises, which

is consistent with a Gulf Stream that shifts from side to side (meanders).

A second oceanographic current at Cape Hatteras is the Deep Western Boundary

Current (DWBC) that flows south along the continental slope of the mid-Atlantic Bight.

There are few data that directly address the kinematics of how it crosses underneath

the Gulf Stream, although chemical tracers show that the upper DWBC (1000–2000 m)

joins the North edge of the Gulf Stream while the deeper part (2000–3000 m) continues

further south along the margin (Pickart and Smethie, 1993; Pickart , 1994). The DWBC

is a continuous feature from Labrador to the Bahamas, so it clearly retains its strong

signature however it crosses the Gulf Stream.

The range of v measured by the AVP over the 5 days of measurements shows that the

vertically integrated velocity (H v, transport per unit width) of the Gulf Stream over the

continental slope changes direction by 35◦ and magnitude by a factor of 2. While Gulf

Stream meanders downstream of Cape Hatteras can be readily described by translation

and rotation of the velocity structure (Watts et al., 1995), meanders at Cape Hatteras

and to the south interact with the continental slope. At the 500 m isobath the Gulf

Stream is 400 m deep, so the velocity must shoal (and v decrease) for shifts greater than
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3 km inshore (the distance to the 400 m isobath). There are few studies that resolve the

evolution of velocity for an onshore meander. Temperature observations 400 km to the

SW (Bane et al., 1981; Brooks and Bane, 1983) show a warm filament forming at the

leading edge of a meander that wraps around a cold-core eddy behind the meander.

How can this velocity variability be recovered in the model? There are not sufficient

data to construct an accurate series of synoptic sections, but schematic modes of variability

can be applied.

One of the difficulties in interpreting these data is that the time-averaged velocity

structure of the Gulf Stream has large horizontal gradients. With the electric field de-

pending on v according to the 1D approximation, small horizontal meanders over steep

topography result in large changes in v even if the transport per unit width Hv remains

constant. Also, horizontal gradients of velocity are not constant across the Gulf Stream,

so meanders also change how velocity gradients align with topography. A secondary issue

is that the stations were not repeated exactly: the across-stream distance between station

repeats has a standard deviation of 130–220 m. This distance is too small to explain much

of the observed velocity variability. The measured variability is thus a mostly due to Gulf

Stream meanders, with a small contribution from inexact station repeats.

It is well established that the transport of the Gulf Stream is nearly constant over

time. This eliminates a ’pulsing’ mode of variability by which the amplitude of the entire

velocity structure increases in tandem. It is important to highlight that pulsing is one

mode of variability, because this is the mode of variability implied by (3.4): changes in

v(1 + γ) and v∗ are linearly related. In reality, changes in v are due to complex meander

events, so 2D effects at any one location will not necessarily be the same magnitude as a

meander develops.

There are two ways to recover the range of velocity v seen in the data at each station.

The first method is by sampling on either side of a central x-location when the velocity

is fixed to topography, and is denoted by ()x . This is analogous to inexact stations

repeats and describes horizontal sampling of the time-invariant or instantaneous velocity

structure. The second method is by staying at a fixed location relative to topography
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while the velocity structure shifts horizontally to either side. This describes meandering

and is denoted by ()v . The sampling is realistically a combination of these two methods,

but the results from combining both methods are very similar to those from just method

2.

The fitting procedures done to obtain λ and y0 are shown schematically in Figure 3.16.

It is easiest to visualize by picking four points on either side of a central point (large dot).

Because v(1 + γ) and v∗ do not change in tandem, when they are plotted against each

other they define a line that does not go through the origin. This is called the tangent line

fit (orange). A second method that will be discussed later is a ratio fit (purple), which

forces the fit to go through the origin. This constraint causes the line to be defined by

the slope to the geometric mean of the data (central large point, Figure 3.16b).
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Figure 3.16: Schematic diagram of the fitting procedure. (a) The quantities v and v∗

plotted against distance, with one central point and 2 points on either side. (b) The 5
points from panel (a) plotted for v(1+γ) against v∗. A tangent line fit recovers a straight
line that does not necessarily go through the origin, whereas a ratio fit connects the origin
with the geometric mean of the data.

The fitting procedures done to obtain λ and y0 from the model is shown in Figure

3.15a. For the first method, a stationary velocity structure, a linear fit extracts the

tangent line of the curve of v∗ against v(1 + γ) (black line) across the transect. The slope

and y-intercept calculated by a tangent line for fixed velocity are denoted 1 + λdx and

y0,dx (red dotted line, Figure 3.17 and red solid line, Figure 3.18). At local extrema —

the inshore maximum in v, a local minimum at the 2000 m station, and a local maximum

at the 3000 m station — the slope changes rapidly in sign (going through both 0 and ∞)
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Figure 3.17: The quantity 1 + λ: AVP data, linear fit (green ×) and ratio fit (black dot)
with vertical lines for error bars, the 1D value 1 + λ1D (black line), sampling over x with
velocity fixed to topography for the ratio method 1+λr,dx (red solid line) and the tangent
line method 1 + λdx (red dotted line), sampling at one location with velocity shifting
relative to topography for the ratio method 1+λr,dv (blue solid line) and the tangent line
method 1 + λdv (blue dotted line).

and the y-intercept reaches large values. The large variability makes this method unstable

for inverting from electric field to velocity.

The second method uses sampling at a fixed location while the velocity structure shifts

by ±∆x. The changes that occur in v for meanders of ±1 km are shown in Figure 3.12a

by the gray lines on either side of the unshifted value (black). A line is fit by least-squares

to the values of v∗ and v(1 + γ) at each station that result from discreet shifts of the

velocity structure. A slope 1 + λdv and a y-intercept y0,dv result. The synthetic sampling

is performed for an even distribution of meander amplitudes, which are 0, ±125, ±250,

±500 and ±1000 m (Figure 3.15b).

Schematic meanders add velocity variability at each station in the model analysis

(Figure 3.15b), but it is smaller than for the observations (Figure 3.15a), especially at the

1000 and 2000 m stations. The contribution from inexact station repeats is small: it is

the horizontal gradient of v multiplied by the standard deviation of cross-stream location

(200 m), yielding a range of less than 0.02 m s−1 for all stations. Meanders are present

in the observations with larger velocity variability than can be recovered with schematic
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Figure 3.18: The y-intercept y0: AVP data (green ×), tangent line fit with fixed velocity
y0,dx (red line), and tangent line fit with meandering y0,dv (blue line).

shifting of the time-averaged structure. Lacking additional data there is not a better way

to recover the observed variability, however, so this method shall be used below with this

caveat.

The linear fit based on schematic meandering is calculated for data points from the

9 meander amplitudes (Figure 3.15b). The y-intercept for the 500 m station is negative

(-0.04 m s−1), in general agreement with the AVP data, but the 1000 m station disagrees

with the AVP data by having a large positive (0.1 m s−1) y-intercept. Although there

is more horizontal averaging and smoothing than by sampling the horizontal structure of

velocity fixed to topography, there remains the artifice of the slope going to 0 or ∞ at

local extrema.

The tangent line fit with meandering (tangent line with fixed velocity) is shown by the

red dotted line (blue dotted line) for the slope 1 +λdv in Figure 3.17 and by the red solid

line (blue solid line) for the y-intercept (y0) in Figure 3.18. Y-intercepts reach values of

±0.1 m s−1, but neither y0,dx nor y0,dv agree with all y0 calculated at the AVP stations.

The tangent line fits do not yield robust values for 1 + λ or y0 and so are of little utility

for inverting the electric field to velocity.

A simple way to obtain a robust fit is to use a ratio for fixed velocity (denoted ()r,dx )
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between v∗ and v(1 + γ)

1 + λr,dx =<
v(1 + γ)

v∗
>dx . (3.18)

This quantity is shown by the red line in Figure 3.17. The use of a ratio forces the

y-intercept to be zero.

A similar definition is obtained if the velocity profile shifts relative to topography but

the observation point remains fixed in space, where the shifting velocity is denoted by ()dv

1 + λr,dv =<
v(1 + γ)

v∗
>dv , (3.19)

shown by the blue line in Figure 3.17.

Using a ratio for calculating λ from the data affords a more robust calculation of λ

that is less influenced by the local extrema or v (whether oceanic or due to uneven water

depth). Though the relation between v(1 + γ) and v∗ may describe a line that doesn’t

go through the origin with high linearity, these tangent line fits are highly variable. The

smoother fit using a ratio is preferred despite its larger misfit. The ratio methods agree

with each other very closely except at the inshore edge of the Gulf Stream (x = 2.5 km)

and reproduce the values of λ calculated from the AVP data the most accurately of any

method. The largest misfit is at the 500 m station, where the AVP λ = 0.97 ± 0.06 from

a linear fit. Using a ratio fit at this station, as this is the only station with a large y-

intercept, yields a value for λr,v of 0.72± 0.02. Note that there is no statistical confidence

for λ calculated at the two deepest AVP stations.

For the time-averaged interpretation of the velocity structure with schematic meanders,

the ratio method for calculating λ gives values that are in best agreement with the AVP

observations.

3.10 Accuracy of Inverting for Velocity

Now that the relationship between v and v∗ is clearer, we turn to the question of how

accurately the electric field can be inverted to velocity.

The depth-uniform error is

εBT,i = v2D(1 + λi)/(1 + γ) − v , (3.20)



102

where v2D comes from the model output (averaged over the water column). The subscript

()i denotes which λi is used from the previous discussion (section 3.9): λ1D, λr,dx, or λr,dv.

The tangent line fits yield large and erratic errors and will not be pursued further.

The depth-uniform errors based on (3.20) are shown in Figure 3.19. In this figure εBT,1D

(black line) indicates that the 1D theory with complete sediment knowledge describes the

electric field within a few cm s−1 over most of the Gulf Stream. The error is largest on

the upper slope where there is a sharp inshore front in velocity and has a maximum of 13

cm s−1 (∼25% relative error). All methods for calculating the depth-uniform error give

large errors in this region, however. The inversions is most accurate in situations where

it is feasible to estimate the sediment conductance independently from geophysical data.

Of the heuristic methods of calculating λ, the smallest barotropic error comes from

λr,dx (εBT,dx, red line) based on an instantaneous velocity structure. Errors are less than

2 mm s−1 except at the landward edge of the Gulf Stream. The calculations for a shifting

velocity structure (εBT,dv, blue line) has significantly larger error that is more variable

over the entire width of the Gulf Stream. The values from λr,dv exhibit large barotropic

error at the inshore v maximum of 0.23 m s−1 (50%), but seaward the error is < 2 cm s−1

( < 10% of v). The salt diapir at 19 km creates an error of -5 cm s−1 (-50% of v) when

the velocity structure shifts over it. Electric fields tend to spread out relative to velocity

gradients, as can be seen in the positive maximum in εBT,1D at the 500 m isobath with

negative extrema on either side. One conclusion is that meanders of velocity fronts over

sloping topography lead to a less accurate relationship between v and v∗. Larger errors

results from heuristic determination of sediment shorting λr,dv than with independent

knowledge of λ1D. Also, v∗ does not exactly follow the small-scale variations of v, as can

be expected from horizontal averaging arguments (Chave and Luther , 1990; chapter 2) .

The second mode of errors are baroclinic errors that arise from Jh(z)/σ having different

vertical structure from the forcing velocity v(z). Because the electric-field-derived velocity

measured by vertically profiling instruments (the AVP in this case) is a relative velocity,

the baroclinic error is defined as the difference between these two properties with the
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Figure 3.19: Depth-uniform velocity errors: εBT,1D (black line), and the rest of the lines
follow equation (3.20) for εBT,dx (red line) and εBT,dx (blue line), see text for details. The
error from a linear fit over space λdx is not shown because it is very erratic. The absolute
values are shown in m s−1.

vertical mean removed

ε′BC(x, z) =v(x, z) − Jx(x, z)
σ(z)Fz

− ε′(x) (3.21)

ε′ =
1

z2 − z1

z2∫
z1

[
v(x, z) − Jx(x, z)

σ(z)Fz

]
dz ,

This quantity is shown in Figure 3.20 for z1 = H(x) and z2 = 0 m. The error ε′BC (Figure

3.20b) has maximum amplitudes but different signs at the sea surface and bottom. The

vertical second moment (similar to a standard deviation) of ε′BC is shown in the top graph.

On the continental slope the maximum rms errors are ≤ 2 cm s−1, with values of less than

5 mm s−1 in deeper water.

The depth-uniform and depth-varying velocity errors discussed above tend to have

maximum gradients at the AVP stations where velocity is constrained. The gridding

algorithm, despite maintaining a smooth second derivative, generates smaller gradients

between the stations. This means that the model is limited to resolving the sampled

velocity structure at the 5 stations, and that the true velocity structure is expected to

lead to errors of similar magnitude between the AVP stations.



104

0

0.01

0.02

ve
l (

m
/s

)

x (km)

de
pt

h 
(k

m
)

 

 

0 10 20 50 150
-4

-3

-2

-1

0

ve
l (

m
/s

)

-0.02

-0.01

0

0.01

0.02

Figure 3.20: Depth-varying velocity errors calculated from the model output. (a) Depth-
varying velocity errors based on (3.21). (b) The maximum values in the vertical of these
errors (in red) and the maximum value of the biased AVP velocity (in purple, see text for
details).

For the AVP data the vertical offset ε′ from (3.21) is only calculated when the instru-

ment is within 50–250 m of the bottom. In regions where the baroclinic error is significant

this will degrade the velocity over the entire water column by 0.01 m s−1 rms (purple line,

Figure 3.20a). The baroclinic relative error is less than 10% of the barotropic velocity, or

given the maximum surface velocities of 1.5–2 m s−1 the relative error is 1–2%.

3.10.1 Depth-varying Correction to Observations

Although the AVP data relies on an absolute velocity to remove the influence of v∗, there

can be 2D perturbations of the sampled quantity J/σ from the true velocity. The station-

averaged velocity profiles can be corrected with the profiles of ε′BC,AVP, where the subscript

AVP means that the error integrates to 0 over the depth range that the reference velocity

is obtained (3.15). The corrections (Figure 3.21) are mostly less than 2 cm s−1 (1–2% of

the maximum velocity) and are surface intensified, correlated with the regions of strong

flow.
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Figure 3.21: Correction to AVP velocities for 2D errors. Profiles of ε′v,AVP at each station.
The colors indicate which station (same as in Figure 3.20).

The corrections shown are in error because the velocities they are based on are in error

themselves. The velocities used to initialize MOED come from a 1D interpretation of the

directly measured electric fields. Assuming that the velocity is accurate to first order, an

iterative approach can be used. The iterative correction converges quickly because the

correction is only 1–2%: subsequent iterations will be further modified by 1–2%. These

corrections are equivalent to the those described by term 3 of (3.9), although this term

is not expected to be valid because the assumption of small H/L is inaccurate along the

continental slope.

3.11 Non-local Electric Currents

The previous sections assume that electric currents flow exclusively in a vertical plane

across the Gulf Stream. By this assumption there can be no non-local currents J∗ because

there are no downstream gradients, in particular downstream gradients in Fzv
∗ (term 2

of (3.9)). In the vicinity of Cape Hatteras the Gulf Stream flows into deeper water, and

although mass transport must be conserved the vertically averaged quantities v and v∗

can diverge in the downstream direction. In this section an equivalent circuit is used to

estimate the magnitude of J∗.

The equivalent circuit (Figure 3.22) consists of two locations along the path of the
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Figure 3.22: The equivalent circuit for calculating the magnitude of J∗. AVP stations
(�), the points at which the v∗ forcing is calculated points A and B (•), and the circuit
elements 1, 2 and 3 are marked. A schematic Gulf Stream path comes from Watts et al.
(1995), based on satellite imagery.
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Gulf Stream, point A along the AVP transect and point B 130 km downstream. The

downstream gradient of v2D along line 1 (of distance L) drives electric currents perpen-

dicular to the Gulf Stream, which in this setup is 0.03 m s−1. J∗ flow in the horizontal

plane in a circular path (segments 2 and 3) that has the same diameter as the separation

between points A and B. The voltage difference is V = ∆v∗LFz. Rough estimates of

the resistances R2 and R3 are taken from mean water depths, sediment thicknesses, and

sediment conductivities (see Table 3.3). Resistances of the elements are

Ri = πL/2WΣi (3.22)

(3.23)

for a width W and vertical conductance Σ = σH(1+λ). The apparent velocity generated

by non-local currents can be written as

Rtotal =Σ−1
2 + Σ−1

3 I =V/Rtotal

Ji =I/WΣi vapparent =Ji/σFz . (3.24)

The shallow inshore path 2 has an apparent velocity error of 4 mm s−1, while the deeper

path 3 has an error of 1 mm s−1. These values are smaller than the 2D errors along the

continental slope, and are comparable to 2D errors over the remainder of the Gulf Stream.

3.12 Discussion

As shown in the previous sections, higher-order effects of motional induction are strongly

dependent on horizontal gradients, and thus require adequate horizontal resolution for

modelling these effects. To gain this resolution the analysis made use of the numerical

model MOED. There are two ways in which the numerical model can not represent the

observations: 1) the model has higher horizontal resolution in the water depth and sedi-

ment than of velocity in the water column, and 2) the AVP observations are time-averaged

over a meander event.

The first incongruity is the higher horizontal constraint of the seafloor and sediment

structure compared with velocity structure. The velocity field used to initialize the model
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points circuit elements

A B 2 3

v (m s−1) 0.3 0.26 - -

v∗ 0.29 0.26 - -

H (m) 2630 3010 500 3250

Hs −H (m) 5000 5000 6000 4000

σ (S m−1) 3.7

σs (S m−1) σ/5

Σv (S) - - 5550 17760

J (A m−2) - - 7.3 × 10−7 2.3 × 10−7

vapparent (m s−1) - - 3.9 × 10−3 1.2 × 10−3

Table 3.3: Defined values for the equivalent circuit shown in Figure 3.22. Prescribed
values based on geometry or AVP data are shown as bold, other values are calculated as
described in the text.

is only constrained at a few locations across the Gulf Stream. Using the exact seafloor

under tracklines in the model greatly increase the scatter of the analysis, because many of

the vertically averaged quantities (e.g. v, v∗, etc.) are divided by H and so will respond to

the higher wavenumbers inherent in H. For this reason a highly smoothed seafloor is used

in the model. Although it is expected that electric fields and electric currents are spatially

averaged (Chave and Luther , 1990), it is difficult to determine the horizontally averaged

spatial scales that electric fields respond to without observations at higher horizontal

resolutions.

The second discrepancy is that the model assumes a ‘synoptic’ (fixed) velocity struc-

ture that is not distorted by meanders. This is a necessary simplifying assumption for

our analysis, given that there are not sufficient observations to re-create the synoptic de-

velopment of meanders. Observed fluctuations of v by a factor of 2 are not reproduced

by schematic meanders in the model. Another way to regard the temporal averaging is

that locations of velocity extrema and horizontal velocity gradients are not fixed in stream
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coordinates, but rather that any one location in stream coordinates can have a range of

velocity or its gradients over the course of a meander event. Thus, the strength of 2D

effects will vary with time in stream coordinates. The observations include a broader

range of states, and so it is not surprising that the station-averaged response is smoother

and gives more robust values than the model results.

The large values in the depth-uniform velocity error found at the 500 m isobath are

unexpectedly large. The true error is unknown lacking knowledge of the inshore velocity,

but the sensitivity to Gulf Stream meanders and to the width of the inshore velocity front is

large. Depth-uniform errors are 0.05–0.15 m s−1 for a range of meander amplitudes (shifts

of ±2 km) and widths (1–5 km) over which the velocity decreases to 0 inshore of the 500 m

isobath. Errors are minimal with complete sediment knowledge, but they increase when

meanders are present over topography and the sediment properties are unknown. The

observations sample a larger range of oceanic conditions than are recoverable from the

model, which implies that the relation between v(1+γ) and v∗ in the data is smoothed over

a broader range of velocity states than the model results. Regardless, the instantaneous

error will be the same magnitude as described here, with improved accuracy applying in

the time-averaged sense to longer time series.

The magnitude of errors found at Cape Hatteras can be put into the context of the

results of Chapter 2. At the 500-m station, the velocity aspect ratio is roughly 0.5, the sed-

iment is 10 times thicker than the water column, and the relative sediment conductivity in

λ1D is 0.2 (σs/σ = 0.8/4.0 = 0.2). The linear sensitivity of the depth-uniform error to σr is

roughly ∆σr/σr = 0.85 for very thick sediments, although it approaches 1 if sediments are

less thick than the water column. This suggests that the depth-uniform error is 0.4 m s−1

(0.03 m s−1) due to Fz (Fh), while the depth-varying error is 0.02 m s−1 (0.03 m s−1) due

to Fz (Fh). The topographic aspect ratio of 0.5 leads to expected depth-uniform errors of

0.01 m s−1 and depth-varying errors of 0.003 m s−1. These parameter space errors agree

with or are larger than the errors calculated specifically at Cape Hatteras. The very thick

sediment relative to the shallow water depth lead in part to such high errors. In fact,

the depth-uniform error at Cape Hatteras is 0.1-0.2 m s−1. Although it is generally not
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expected that 2D errors generated by velocity gradients and sloping topography should be

additive, that appears to be the case at Cape Hatteras. Unlike the velocity gradient case

of a flat bottom, at Cape Hatteras the topography is very steep, with the effect that large

relative sediment thicknesses only occur on the upper continental slope. This presumably

acts to reduce the depth-uniform errors (0.1–0.2 m s−1) from the larger values predicted

in Chapter 2.

3.13 Conclusion

This article investigates how the relationship between electric fields and velocity can devi-

ate from the commonly used one-dimensional approximation. The first order 1D approx-

imation describes how oceanic electric fields and electric current densities relate to the

forcing velocity using a 1D relation in the vertical: a depth-uniform electric field (v∗Fz)

is linearly related to the barotropic velocity v, and the depth-varying electric current

density divided by conductivity and Fz is related to v(z) by a depth-uniform offset (v∗).

These two electric field modes also describe two ways to measure oceanic electric fields,

with bottom electrodes/cables or with vertical profilers, and furthermore are analogous

to barotropic and baroclinic velocity modes.

In complex regions with strong gradients in depth, velocity, or sediment conductance,

however, the 1D approximation can have significant errors. The continental slope near

Cape Hatteras is an example of a highly complex location: the continental slope is steep,

the Gulf Stream is a strong forcing velocity that supports energetic meanders and sharp

velocity fronts, and the bottom sediment is unusually thick with variable conductivity.

Measurements of the electric field across the Gulf Stream were used to test the 1D

approximation. At the 500 m isobath the relation between the vertically averaged velocity

v and the conductivity-weighted depth-averaged velocity v∗ is not described by a constant

ratio, as predicted by the 1D approximation. The highly linear data is best fit with a line

that has a non-zero y-intercept. The rest of the article investigates possible reasons why

the 1D model is inaccurate at this location.

Initialized with the time-averaged AVP velocities and water conductivities, the nu-
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merical model MOED (Tyler et al., 2004) solves for the electric field in a 2D transect

across the Gulf Stream. Geophysical data is compiled to constrain the sediment electric

properties. The geometry of stratigraphic layers is found from deep seismic surveys, while

the conductivity of each layer is estimated from nearby borehole conductivity recordings.

A magnetotelluric analysis finds no correlation between the electric field produced by

ionospheric fluctuations of the magnetic field and the measured oceanic electric field.

The modelled electric field is in good agreement with the time-averaged AVP data,

although the large variability in the measurements is not fully reproduced by schematic

meandering. The 1D approximation is in error by < 0.01 − 0.02 m s−1 (< 5%) for the

depth-uniform electric field over most of the Gulf Stream, but the sharp inshore edge in

velocity occurring over the upper continental slope gives rise to errors 3–10 cm s−1 (10–

30% of v). Meanders over the upper continental slope result in a linear fit between v∗

and v with a negative y-intercept, although the model results do not accurately describe

all of the AVP data. Using a ratio to describe the sediment conductivity is found to

be more accurate for inverting v∗ to v. The schematic meanders invoked by the model

yield larger errors than when the velocity structure is fixed to topography, implying that

it is more difficult to recover v from stationary electrodes when ocean currents meander

over steep topography. The inversion is most accurate with knowledge of the sediment

thickness and conductivity. Use of heuristic methods for the inversion (the ratio method)

in the presence of meanders yields larger errors: 0.01–0.04 m s−1 seaward of the 1000 m

isobath, and 0.1-0.2 m s−1 shoreward. An iterative method corrects the time-averaged

velocity profiles by 0.01–0.02 m s−1 to remove 2D velocity errors. To be able to calculate

2D perturbations, it is necessary to know the horizontal structure of the flow.

As the Gulf Stream moves into deeper water, the 3D effect due to divergence of v gener-

ates non-local currents that appear as an additional depth-uniform error. The magnitude

of this effect is estimated at 0.5–1 cm s−1.

The higher dimension effects discussed here in great detail may seem too complex to

remove for researchers who simply want to measure ocean velocity. The region near Cape

Hatteras was chosen specifically because it has a unique confluence of complexities that
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distort the electric field from the 1D approximation. Not only is the continental slope

unusually steep and the sediment unusually thick, but the Gulf Stream is a very strong

forcing constrained by topography and with energetic meanders. Maximum velocities

exceed 1.5 m s−1 and the barotropic velocity is tens of cm s−1. Instrument accuracy of

electric field-based instruments is generally 1–2 cm s−1, so the errors discussed here are

the same order as instrumental errors. Less energetic regions will have smaller absolute

errors.
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Chapter 4

CONCLUSION

Motionally induced electric fields are generated in the ocean by seawater moving

through the earth’s magnetic field. Physical oceanographers are interested in these fields

because they provide a convenient though indirect way to measure ocean velocity. Elec-

tric currents and electric fields are straightforward to measure and are closely related to

vertical velocity structure and to a spatially averaged quantity v∗ that is dynamically

similar to transport.

Measurements are usually interpreted with a 1D approximation that describes two key

modes of the electrical response: the electric field is depth-uniform v∗Fz, is linearly related

to the vertically averaged velocity v, and includes shorting through conductive sediment;

and the electric current density divided by conductivity and Fz has the same vertical

structure as velocity with an offset of v∗. These two aspects correspond to the two ways

of measuring oceanic electric fields, from electrodes mounted on stationary or vertically-

profiling platforms, and also to the standard decomposition of velocity into barotropic

and baroclinic modes.

The 1D approximation is strictly valid in the open ocean when horizontal length scales

of velocity and topography are much larger than the water depth. This condition is not

met in all parts of the ocean, for instance near continental margins where topography is

steep and where energetic and oceanographically important boundary currents generate

sharp fronts and baroclinic instabilities. The quasi-static electric response in these regions

is not as simple as the 1D approximation. The higher order perturbations are quantified

in magnitude and shape, with the ultimate goal of helping oceanographers accurately

convert from electric field to velocity.

The influence of higher order perturbations is investigated with two approaches: a

theoretical and numerical approach based on simple geometries in which the spatial scales
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are varied to resolve the appropriate parameter space, and a detailed analysis of measure-

ments at Cape Hatteras.

The simple geometries presented in the first half of the dissertation resolve electric

fields and electric currents generated in the presence of horizontal gradients of velocity and

topography. Depth-uniform and depth-varying perturbations from the 1D approximation

depend strongly on the aspect ratio of height to width. The aspect ratio used for horizontal

velocity gradients is the ratio of water depth to velocity width scale, while that used for

sloping topography is the ratio of topographic height to topographic width. Depth-uniform

velocity errors decrease exponentially with aspect ratio, normalized sediment thickness,

and relative sediment conductivity, while depth-varying errors decrease exponentially with

aspect ratio and are only slightly dependent on the other parameters.

Maximum aspect ratios for both velocity and topography are expected to be less than

0.01–0.1 based on observed scales and scaling arguments. The largest realistic aspect ratio

for velocity gradients generates velocity errors that are 1–3% of the maximum velocity

signal for sediments as thick as the water column and with typical sediment conductivi-

ties (σr = 0.1). The depth-uniform errors are proportional to λ1D. The geomagnetic east

component of velocity also contains a perturbation induced by Fh, but such perturba-

tions are less sensitive to aspect ratio than those induced by Fz. Depth-varying velocity

errors at large aspect ratios are the same magnitude due to Fz and Fh, but for small

aspect ratios the Fh contribution dominates (order 0.01 m s−1). Sloping topography gen-

erates errors an order of magnitude smaller than velocity gradients for the same aspect

ratio. The two source of 2D effects (horizontal gradients of velocity and topography)

are not linearly-independent, however, so there may be interactions between higher order

processes generated by velocity gradients and sloping topography.

The second part of the dissertation investigates in detail the region near Cape Hatteras

where the Gulf Stream separates from the continental margin. This region was chosen to

test the 1D approximation because of the unusually complex environment: a fast velocity

jet with sharp velocity fronts and meanders, steep topography, and thick sediment with

variable conductivity.
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The oceanic electric field was measured with a vertically profiling float in a transect

across the Gulf Stream. On the upper continental slope the 1D theory doesn’t entirely

describe the observations, rather the downstream component of velocity v(1+γ) is related

to v∗ by a multiplicative factor and a y-intercept. To investigate this result a numerical

model is used to calculate the electric field at high resolution based on the observed veloc-

ity. Sediment thickness and conductivity are estimated from deep seismic lines and from

sediment conductivity profiles in nearby boreholes. A magnetotelluric analysis estimates

the electric fields induced in the ocean by external (ionospheric) magnetic fluctuations:

no significant correlation is found with the AVP data.

The modelled electric field shows that meanders over the upper continental slope can

result in a linear fit between v∗ and v with a negative y-intercept. The depth-varying

velocity error from a 1D interpretation of the electric fields is 1–2 cm s−1 (2–5%). An

iterative approach is demonstrated for removing these 2D perturbations from the data.

The depth-uniform electric field v∗, as would be measured by seafloor electrodes or a cable,

has an error less than 1 cm s−1 (< 5%) for most of the Gulf Stream. A maximum in v on

the upper continental slope generates a larger depth-uniform error of 5–15 cm s−1 (10–

40% of v) in this region. Three dimensional electric currents in the region yield apparent

depth-uniform velocity errors that are 0.005 m s−1.

The errors calculated at Cape Hatteras (Chapter 3) agree with the errors estimated

from the generalized models (Chapter 2). The Cape Hatteras region has extreme values

of velocity and topographic aspect ratios, and it also has very large sediment thickness

relative to the water depth. The 500-m station provides a useful demonstration of how to

extract expected errors from the general results of Chapter 2.

First, the non-dimensional parameters at the 500 m isobath need to be determined

(Table 4). The width-scale is estimated as the width of the velocity maximum on the

upper continental shelf (5 km), the effective sediment conductivity comes from section

3.8, and the other scales are evident from the transect geometry (Figure 3.3).

The perturbations expected from velocity gradients are estimated from Figure 2.7. The

sediment thickness (Hs −H)/H and the aspect ratio H/L allow values to be obtained for
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Table 4.1: Non-dimensional parameters at the 500-m station.

scales at

parameter 500-m station value description

H

L

500 m
5000 m

0.1 barotropic aspect ratio

H ′

L

400 m
5000 m

0.08 baroclinic aspect ratio

Hmid

Lt

1250 m
10, 000 m

0.125 topographic aspect ratio

Hs −H

H
=

∆Hs

H

5000 m
500 m

10 relative sediment thickness

σr =
σs

σ

0.58 S m−1

4.2 S m−1
0.14 relative sediment conductivity

At

Hmid

1200 m
1250 m

0.96 relative topographic relief

the depth-uniform error εBT, 0.2 m s−1, and the depth-varying error εBT, 0.0015 m s−1.

There are two corrections to make to these values: the first to correct for the observed

σr,, and the second because v∗ is not calculated over the entire water column.

The depth-uniform error needs to be multiplied by the sensitivity to σr, because σr =

σs/σ is 1.3 times larger at the 500-m station (0.13) than in the model (0.1). For the given

aspect ratio and sediment thickness, the relative change of the error to the change of σr

is (1.5−1)/(2−1) = 0.5 (Figure 2.2b), so a 30% increase in σr increases the error by 15%

to 0.12 m s−1. The depth-varying error is independent of σr.

The second correction is based on where in the water column the velocities are made

absolute — for the data at Cape Hatteras this is performed within 250 m of the seafloor.

The biased depth-varying error explicitly captures this effect, and is typically 1.25–1.5

times larger than the unbiased error shown in Figure 2.5b. This modifies the depth-

varying error to 0.002 m s−1. The instrument-specific depth-uniform error is ε+ε′(z = zref)

for some reference depth(s) zref. Figures 2.4b and 2.5b show that ε1D and ε′bias are the

opposite sign near the seafloor, so the depth-uniform error is reduced by 0.002 m s−1. If
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a surface-referenced XCP is being used, however, the depth-uniform error is increased by

the same amount, as the signs of ε1D and ε′ are the same in the surface layer.

Thus, the expected errors induced by Fz at the 500-m station are 0.12 m s−1 and

0.002 m s−1 for the depth-uniform and depth-varying errors. A similar procedure finds

the errors expected from Fh in the geomagnetic east-west velocity component: 0.01 m s−1

and 0.015 m s−1 for depth-uniform and depth-varying errors. As it is unclear how the

errors generated by Fz and Fh combine, we shall simply take the larger value for the

depth-uniform and depth-varying components.

The errors expected due to topography are found from Figure 2.12. The depth-uniform

errors are 0.003–0.007 m s−1 (Figures 2.12a,b), but these values need to be corrected for

the proper sediment thickness and topographic relief at the 500-m station. The combined

influence of ∆Hs/H, At/Hmid, and σr is estimated from the discussion to increase the

error by a factor of 10, giving depth-uniform errors of 0.03–0.07 m s−1. The depth-varying

error from Figure 2.12c is 10−4 m s−1, which is further reduced by a factor of 2 to 5×10−5

m s−1 because of the sensitivity to the other parameters.

Table 4.2: Expected and calculated velocity errors at the 500-m station.

depth-uniform depth-varying

(m s−1) (m s−1)

Cape Hatteras transect (ch. 2) 0.05–0.15 0.01–0.03

velocity gradient, Fz 0.12 0.002

velocity gradient, Fx 0.01 0.015

topographic gradient Fz 0.03–0.07 5 × 10−5

The magnitude of estimated velocity errors agrees with the more detailed velocity

errors calculated specifically at the 500 m station (summarized in Table 4. This result

shows that 2D perturbations generated by both velocity gradients and topographic gra-

dients can be described by the quadrature sum of each process investigated separately

( (0.122 + 0.07.2)−1/2 = 0.14 m s−1). It is not intuitive that the interaction of the two
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processes is linear and independent. The comparison of the generalized models and the

Cape Hatteras transect is not entirely analogous, however, because the models have uni-

form non-dimensionalized scales over the entire domain, while at Cape Hatteras the scales

change rapidly across the transect. Nevertheless, there do not appear to be non-linear

increases in the errors due to the presence of both velocity and topographic gradients.

Generally, there can be significant error in extracting the barotropic velocity v from v∗

for meandering currents over steep topography. The depth-varying velocity errors, which

would bias vertically profiling floats, are relatively small in this region given the magnitude

of velocity and are the same magnitude as instrument accuracy (typically 0.01–0.02 m s−1

for instruments with electrodes).

The higher dimension effects discussed here may seem prohibitively complex for re-

searchers who simply want to measure ocean velocity. The region near Cape Hatteras

was chosen specifically because it has a unique confluence of complexities that distort

the electric field from the 1D approximation. Not only is the continental slope unusually

steep and the sediment unusually thick, but the Gulf Stream is a very fast flow that is

constrained by topography and exhibits energetic meanders. Maximum velocities exceed

1.5 m s−1 and the barotropic velocity is tens of cm s−1. Less energetic regions will have

smaller absolute errors.

For researchers interested in using electric field methods to calculate velocity, these

results suggest the following advice. The simple shapes of velocity errors in relation

to jet edges or topography allow for errors due to 2D electric fields to be estimated

by a perturbation procedure, if the dominant (first order) horizontal velocity structure

is known. The accuracy of this procedure depends on sufficient horizontal resolution to

resolve the velocity and topography gradients. The largest errors are in the depth-uniform

electric fields, so vertical profilers are subject to smaller errors than seafloor cables.

The most benefit comes from being able to plan electric field sampling to either avoid

anomalous regions or to include measurements that will allow calculation of 2D perturba-

tions for removal by a perturbation approach. For instance, it may be sufficient to know

how the axis of the Gulf Stream meanders with time in regions where its velocity structure
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in stream coordinates is nearly constant. Now that there is a basic physical understanding

of the geometry and dependencies of these errors, numerical methods can be investigated

for heuristically correcting electric-field-derived velocities without the high-resolution nu-

merically modelling performed here.

The detailed analysis of measuring velocity indirectly through electric fields in this dis-

sertation allows researchers to estimate 2D perturbations for a broad range of geometries.

The apparent limitations of small errors over most of the realistic parameter space does

not diminish the fact that electric field-based methods have unique advantages for measur-

ing velocity — ease of deployment, simple calculation of velocity, high vertical resolution,

and a quantity v∗ that is dynamically consistent with transport. Electric field instruments

(e.g. EM-APEX floats in project ARGO, or bottom electrometers on cabled observatories)

are easily integrated into large-scale observing networks. The detailed analysis speaks to

the ultimate goal for any method of measuring velocity: a better understanding of how

the instrument and technique respond to oceanic velocity.
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Appendix A

APPENDICES FOR CHAPTER 2

A.1 Analytic Solution

The electric field solution that is under consideration is time-invariant, electric currents

flow but the magnetic field is constant. For this magnetostatic case, the only parameter

that needs to be solved is the electric potential Φ. Other quantities can be calculated

using standard electromagnetic equations

E = −∇Φ

J =σ (v × F − E)

∇× B =µJ .

The solution is

Φ1 =
v0Fz

α
sin(αx)

[
1 − scrcs(α(H −H ′))

scrcs(αH)
cosh(αz)

]
. . .

+
v0Fx

α
cos(αx)

[
ccrss(α(H −H ′)) − ccrss(αH)

scrcs(αH)
cosh(αz) − sinh(αz)

]

Φ2 =
v0Fz

α
sin(αx) sinh(αH ′)

[
ccrss(α(z +H))

scrcs(αH)

]
. . .

+
v0Fx

α
cos(αx)

[
cosh(αH ′) − 1

] ccrss(α(z +H))
scrcs(αH)

Φ3 =
v0Fz

α
sin(αx) sinh(αH ′)

cosh(α(z +Hs))
scrcs(αH)

. . .

+
v0Fx

α
cos(αx)

[
cosh(αH ′) − 1

] cosh(α(z +Hs))
scrcs(αH)

, (A.1)

where scrcs(x) and ccrss(x) are defined in section 2.3.1.

A.2 Convergence of Finite Velocity Numerical Evaluation

One problem with this discrete expansion is that there is a non-zero Ex outside of the jet

that is uniform in x, as seen by the constant slope in electric potential (Figure A.1). This
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is physically counter-intuitive, since with a finite forcing function E should also be finite

and should decay to zero outside of the jet. Finite Fourier expansions always result in a

repeating solution. Because the electric potential decreases across the jet, there must be

non-zero gradient on either side of the jet for the potential to remain continuous. This is

a numerical issue simply related to how many terms are used in the Fourier evaluation. A

numerical model run with the same geometry (MOED, Tyler et al., 2004) confirms that

Ex does go to 0 far from the jet (appendix A.3). It was also verified that J is conserved

in all solutions according to

∇ · J = 0 =⇒
∫

(∇ · J) dV =
∮

J · da = 0 ,

where, since this is a time-invariant problem there is no change in charge density ∂ρc /∂t =

0.

The analytical solution is less computationally expensive to run than the numerical

model and can be evaluated at arbitrary (x, z) locations without loss of accuracy, however,

so it is preferred for calculating the solution over a wide parameter space.

The background Ex was found computationally to be dependent on the size of M , and

tends towards 0 with increasing M (Figure A.1, right). To verify that this is the expected

behavior of a finite numerical Fourier expansion, I performed the following calculations.

The Fourier coefficients an,M are determined by

an,M =

∞∫
−∞

v(x) cos(kn,Mx) dx , (A.2)

where v(x) is the chosen velocity form given in (2.9) and kn,M and νn,M are defined in

section 2.3. The forcing function used can be considered the sum of a constant and a

cosine multiplied by a rectangular function Π(x/L)

Π(x) =


 1 |x| < 1/2

0 |x| ≥ 1/2
. (A.3)

Thus the Fourier coefficients can be thought of the convolution (denoted by ∗) in the

frequency domain of the Fourier transforms of 1
2 [1 + cos(2πx/L)] and of Π(x/L). This
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Figure A.1: (left) The electric potential Φ at z = −H ′/H for multiple values of m. The
dotted line is for m = 4, the dashed-doted for m = 8, the dashed for m = 16, and the solid
for m = 256. Note the a non-zero slope outside of the jet (|x/L| < 1/2) that corresponds
to a non-zero horizontal electric field, and that for lower values of m the domain is small
enough to show that the solution is periodic with period mx/L. The solution is under-
resolved in x for |x/L| > 1. The offset of Ex/max(Ex) plotted against the frequency
resolution 1/M (right). The slope of the best-fit line is −1.028 ± 0.007. The parameters
used are: H = 3000, H ′ = 500, Hs = 6000 m, L = 100 km, and σs/σ = 0.4.

yields (Korn and Korn, 1961)

an,M =F
{

1
2
[1 + cos(2πx/L)]

}
∗ F {Π(x/L)}

=
{

1
2
δ(kn,M ) +

1
4
δ(kn,M − 1/L) +

1
4
δ(kn,M + 1/L)

}
∗ {L sinc(Lkn,M )}

=
L

2

[
sinc(νn,ML) +

1
2

sinc(νn,ML− 1) +
1
2

sinc(νn,ML+ 1)
]

(A.4)

where sinc(c) = sin(x)/x. The continuous function a(k) is shown in Figure A.2, with

points indicating how it is discretized for M = 8. In practice The value of M is limited to

powers of 2. Values of M that contain odd factors result in the positive and negative lobes

of the continuous function a(k) being divided unequally, with the result that the sum over

two contiguous lobes of opposite sign is not close to 0. The resulting solution has large

deviations from the true solution, much larger than solutions based on the nearest power

of 2.



132

normalized wave frequency Lk

Fo
ur

ie
r

co
effi

ci
en

t:
a
>

0,
a
<

0

0 1 2 3 4 5 6 7 8 9 10

10−7

10−6

10−5

10−4

10−3
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At any location x with fixed z = z0, the solution can be written

Ex,i:n,M (x, z0) =
L

2

N∑
n=0

an,M [Ai(z0) cos(kn,Mx) +Bi(z0) sin(kn,Mx)] . (A.5)

for any region i = 1, 2, 3.

As M → ∞ the sum converges to the exact solution. But in the case where M is finite,

how is the error expressed? The positive and negative side lobes of an,M for kn,M > 2

are expected to largely cancel each other far from the jet, leaving the lowest frequencies

n/M < 2 largely responsible for any error due to the discrete expansion.

The sinc functions that describe an,M can be expanded with the following Taylor series

cos(x) = 1 − x2

2!
+
x4

4!
− x6

6!
+ · · ·

sinc(x) = 1 − x2

3!
+
x4

5!
− x6

7!
+ · · ·

sinc(x− 1) = 1 +
∞∑

j=1


 ∞∑

i=j

(−1)i+1x2j−1

(2j − 1)!(2i− 2j + 1)!(2i+ 1)
+

∞∑
i=j

(−1)ix2j

(2j)!(2i− 2j)!(2i+ 1)




sinc(x+ 1) = 1 +
∞∑

j=1


 ∞∑

i=j

(−1)ix2j−1

(2j − 1)!(2i− 2j + 1)!(2i+ 1)
+

∞∑
i=j

(−1)ix2j

(2j)!(2i− 2j)!(2i+ 1)


 .

When calculating the Taylor expansion of an,M , the odd exponents of νn,ML from

sinc(νn,ML− 1) and sinc(νn,ML+ 1) cancel, leaving

an,M = 2 +
∞∑

j=1

(−1)i(νn,ML)2j


 1

(j + 1)!
+

∞∑
i=j

1
(2j)!(2i− 2j)!(2i+ 1)




The inner sum is finite, since the terms converge as 1/i2, and it will be denoted C2j for

simplicity.

Using these we obtain an analytic form for how Ex,i:n,M (x, z) behaves as M → ∞. Let

x0 be outside of the jet, for instance at x0 = pL for any p ≥ 1. Since Ai(z) and Bi(z) in

(A.5) do not depend on M , the question of convergence becomes

M−1∑
n=0

an,M cos(2πnp/ML)

= 2
{

1 +
( n
M

)2
[−(2πp)2

2!
+ C2

]
+
( n
M

)4
[
(2πp)4

4!
− (2πp)2

2!
C2 + C4

]
+ . . .

}
. (A.6)
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In this expression, it is important to note that for each term of (n/M)2j the first factor

in square brackets, of the form (2πp)2j/(2j)!, does converge, thus for n/M < 1 this series

converges for any p and thus any x.

Over the interval 0 ≤ n/M < 1, the question has become how well does the discrete

Fourier expansion for finite M

1
M

M−1∑
n=0

ν2j
n,M =⇒ 1

M

M−1∑
n=0

( n
M

)2j
(A.7)

differ from the exact result for M → ∞
1∫

0

f2j df ?

The finite sum of (A.7) can be expressed (Jolley , 1961)

1
M2j+1

M−1∑
n=0

n2j =
1

M2j+1


 n2j+1

2j + 1
+
n2j

2
+

1
2


 2j

1


B1n

2j−1 + . . .




For j = 1, the error of the discrete approximation is

1∫
0

f2j df − 1
M3

M−1∑
n=0

n2 =
1
3
−
(

1
3
− 1

2M
+

1
6M2

)
=

1
2M

+
−1

6M2

This error clearly goes to 0 with increasing M with a slope of −1, in agreement with

the results of Figure A.1 right. The analysis above confirms that the uniform offset of Ex

outside of the jet is due to numerical constraints with a slope of M−1.

There are two ways to minimize the influence of this numerical issue: choose a very

large M (> 100), or subtract a uniform Ex from the solution. The former is at the

expense of computation time. Although the solution takes tens of minutes for M = 128

in Matlab on a Mac G4 desktop with 2 GB of RAM, this is still prohibitive if solutions

over a wide parameter space are desired. The latter choice is physically sound, since the

solutions of the magnetostatic equations (Laplace equations) are linearly independent and

the addition of a constant Ex yields another valid solution. With this choice, M is chosen

to make the offset in Ex outside of the jet much smaller than the forcing amplitude at

x = 0.
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In practice, the value of M does depend on the value of L/H used. For large values

of L/H the electric field spreads horizontally for large multiples of L/H, roughly scaling

as a few times H. The electric field does not go to a uniform value close to the jet edge.

For small values of L/H, the electric field attains a uniform value within a few H. The

repeating nature of the Fourier expansion thus requires a larger repeat length (smaller M)

to properly resolve the uniform offset in Ex for large values of L/H. This is implemented

first by defining an heuristic distance at which Ex becomes uniform as

Mheuristic = 12
(
H + (Hs −H)

σs

σ

)
/L+ 1 = 12D/L+ 1 ≈ 2αD + 1 . (A.8)

This formulation stresses that D is a key non-dimensional parameter for this problem.

The value of M used is then calculated by 2ˆ[roundup(Mheuristic) + 1]. A minimum value

of 8 is used for small Mheuristic, while the maximum used is 128 for large values.

A.3 Cross validation of the Analytic Solution and MOED

To cross-validate the Fourier-summed analytic technique (section 3.2) and the MOED

model, the electric fields for the same geometry are calculated and compared here.

The different numerical techniques give rise to slight differences in the output. The

analytic solution is calculated exactly at every location, with any error from the true

solution resulting from the truncated and finite Fourier summation. The accuracy of

the numerical model, however, depends on how well the grid resolves the step-changes

in conductivity structure. For instance, even though there is a step change in velocity

on either side of z = −H ′, the model treats this as a linear change between the vertical

grid-points that are on either side of this change. Thus the effective vertically integrated

velocity forcing is slightly larger in MOED, which results in electromagnetic fields that

are larger by 9%. The results from MOED are scaled by 1/1.09 to correct for this numeric

over-estimate.

Another feature of the numeric model is that it approximates the ocean-air interface as

a linear decrease in conductivity from ocean conductivity at z = 0 to a zero conductivity

at the next higher grid-point. This approximation also serves to increase the magnitude

of the resulting electromagnetic solution.
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In MOED the horizontal and vertical grid-spacings in the jet are ∆x = 10 m and

∆z = 5 m. In the analytic solution, the z-grid is resolved within ε = ±5 × 10−8 m of

z = −Hp and z = −H to allow for more accurate vertical integrals of the resulting output.

A small L and a small H ′ are chosen for the test parameter set so that the situation is

fully 2D (Figures A.3 and A.4). The contours for Ex and Ez are every 1 µV m−1, and the

two techniques agree very well (left two panels in both figures). The difference between the

models (∆Ex and ∆Ez, right panels in both figures) are an order of magnitude smaller.

The maximum magnitude of Ex is 12.4 µV m−1, and the maximum, mean, and second

moments of ∆Ex over the region −1/2 ≤ x/L ≤ 1/2 and −Hs ≤ z ≤ 0 are 0.11 µV m−1

(relative error of 0.9%), 0.012 µV m−1 (0.1%), and 0.05 µV m−1 (0.4%). The maximum

magnitude of Ez is 7.5 µV m−1, and the maximum, mean, and second moments of ∆Ez

over the same region are 0.66 µV m−1 (9%), 0.0000014 µV m−1 (0.0002%), and 0.09 µV

m−1 (1.2%). The differences between the electric fields are largest in the region of non-zero

velocity, which suggests that the grid in MOED slightly effects the solution.

de
pt

h
(k

m
)

MOED

dist (km)

de
pt

h
(k

m
)

Analytic

−5 0 5
−6

−4

−2

0
−6

−4

−2

0

MOED-Analytic

dist (km)

de
pt

h
(k

m
)

−5 0 5
−6

−5

−4

−3

−2

−1

0

Figure A.3: The model result for Ex from MOED (top) and from the analytic case eval-
uated with a Fourier summation (bottom) for the parameters L = 5 km, H ′ = 500 m,
H = 3000 m, Hs = 6000 m, and σr = 0.4, with contours every 1 µV m−1. Positive
contours are solid lines, negative are dotted, and 0 is shown as a thick line. At right is
the difference between the two models as gridded to the MOED grid, with contours every
0.01 µV m−1.
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Figure A.4: The same as Figure A.3 except for Ez.
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Appendix B

APPENDIX FOR CHAPTER 3

B.1 AVP data from R/V Endeavor cruise 329

The analysis in section 3.3 is based on data that have not yet been published. The

locations, time, and quality of the data is listed in Table B.1, while the vertically averaged

quantities used for the analysis are listed in Table B.2. Profiles of temperature, salinity,

density, and velocity follow in Figures B.1 through B.27. Only the down profiles are

shown, because these have high quality CTD sampling of undisturbed wtaer.

Table B.1: Station information for the AVP data

date time latitude longitude
drop station (1992) (UTC) (◦N) (◦W) comments

avp403 35 Jul 15 16:56 34◦33.950’ 74◦19.907’ good data

avp404 35 Jul 15 20:59 34◦33.714’ 74◦20.108’ no data

avp405 5 Jul 16 10:45 35◦3.975’ 75◦6.510’ good data

avp406 10 Jul 16 12:35 35◦3.023’ 75◦4.028 good data

avp407 20 Jul 16 14:41 35◦2.245 75◦2.411 good data

avp408 10 Jul 16 17:25 35◦3.082 75◦4.036 good data

avp409 5 Jul 16 19:02 35◦4.081 75◦6.412 good data

avp410 10 Jul 16 20:22 35◦3.336 75◦3.755 good data

avp411 30 Jul 17 12:52 34◦52.990 74◦42.582 good data

avp412 20 Jul 17 17:24 35◦2.485 75◦2.339 good data

avp413 30 Jul 17 20:45 34◦53.028 75◦2.339 up-profile data lost

avp414 5 Jul 18 13:38 35◦3.887 75◦6.433 good data

avp415 10 Jul 18 15:05 35◦2.933 75◦3.817 good data

(continued on next page)
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Table B.1: (continued)

date time latitude longitude
drop station (1992) (UTC) (◦N) (◦W) comments

avp416 20 Jul 18 17:08 35◦2.382 75◦2.331 good data

avp417 10 Jul 18 19:44 35◦3.073 75◦3.964 good data

avp418 5 Jul 18 21:31 35◦3.964 75◦6.454 good data

avp419 5 Jul 18 22:34 35◦5.571 75◦4.911 good data

avp420 35 Jul 19 8:55 34◦33.734 74◦19.786 good data

avp421 30 Jul 19 13:55 34◦52.846 74◦42.486 good data

avp422 20 Jul 19 18:10 35◦2.319 75◦2.282 good data

avp423 20 Jul 19 20:26 35◦2.921 75◦1.924 good data

avp424 20 Jul 19 22:51 25◦2.303 75◦2.051 no trailer — OK

avp425 20 Jul 20 12:16 35◦2.290 75◦2.303 good data

avp426 10 Jul 20 14:52 35◦3.067 75◦3.961 good data

avp427 5 Jul 20 16:53 35◦4.235 75◦6.575 good data

avp428 10 Jul 20 18:22 35◦3.031 75◦4.085 good data

avp429 5 Jul 20 20:07 35◦4.272 75◦6.039 good data

avp430 10 Jul 20 21:43 35◦3.588 75◦3.604 good data

avp431 20 Jul 21 0:00 35◦2.540 75◦2.115 no data
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Table B.2: A summary of the vertically integrated AVP data

used in this analysis. The rotation angle θ is defined so that

the cross-stream velocity u has the property σ′u′ = 0 (see

section 3.3.2). There was no data for drops avp404, avp430,

and profile avp413u.

H θ σ v v∗

drop stn (m) (◦) (S m−1) (m s−1) (m s−1) γ

avp403d 35 3504 32.9 3.69 0.122 0.100 0.165

avp403u 35 3504 27.0 3.68 0.124 0.102 0.176

avp405d 5 594 44.3 4.18 0.417 0.289 0.173

avp405u 5 594 43.7 4.12 0.427 0.306 0.161

avp406d 10 1159 41.8 3.80 0.143 0.148 0.585

avp406u 10 1159 35.3 3.77 0.157 0.165 0.507

avp407d 20 2166 41.7 3.58 0.025 0.067 2.57

avp407u 20 2166 40.2 3.56 0.024 0.075 2.43

avp408d 10 1140 43.2 3.81 0.142 0.152 0.545

avp408u 10 1140 43.2 3.77 0.133 0.152 0.550

avp409d 5 592 46.7 4.17 0.300 0.229 0.218

avp409u 5 592 45.4 4.10 0.318 0.247 0.198

avp410d 10 1142 46.9 3.80 0.076 0.093 1.02

avp410u 10 1142 45.9 3.77 0.106 0.126 0.682

avp411d 30 2997 49.9 3.65 0.325 0.319 0.293

avp411u 30 2997 46.4 3.63 0.346 0.346 0.266

avp412d 20 2130 52.1 3.57 -0.005 0.043 -10.6

avp412u 20 2130 49.5 3.56 -0.011 0.038 -5.14

avp413d 30 2998 51.8 3.65 0.335 0.333 0.292

avp413u 30 2998 —

(continued on next page)
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Table B.2: (continued)

H θ σ v v∗

drop stn (m) (◦) (S m−1) (m s−1) (m s−1) γ

avp414d 5 666 55.7 4.03 0.372 0.276 0.258

avp414u 5 666 52.5 3.99 0.391 0.302 0.238

avp415d 10 1345 54.3 3.71 0.142 0.183 0.720

avp415u 10 1345 52.9 3.69 0.111 0.151 0.899

avp416d 20 2099 53.4 3.59 0.041 0.104 2.21

avp416u 20 2099 50.8 3.57 0.047 0.105 1.91

avp417d 10 1232 51.9 3.77 0.165 0.187 0.731

avp417u 10 1232 49.5 3.74 0.173 0.187 0.666

avp418d 5 597 51.5 4.15 0.546 0.391 0.192

avp418u 5 597 49.7 4.09 0.548 0.391 0.182

avp419d 5 550 50.3 4.21 0.587 0.393 0.175

avp419u 5 550 48.4 4.14 0.584 0.390 0.169

avp420d 35 3525 44.2 3.68 0.068 0.060 0.255

avp420u 35 3525 39.7 3.68 0.062 0.055 0.284

avp421d 30 2987 51.6 3.67 0.307 0.296 0.277

avp421u 30 2987 46.8 3.66 0.303 0.298 0.275

avp422d 20 2115 52.3 3.59 0.064 0.114 1.29

avp422u 20 2115 50.1 3.57 0.074 0.124 1.08

avp423d 20 2072 53.4 3.60 0.104 0.149 0.806

avp423u 20 2072 52.7 3.58 0.093 0.138 0.852

avp425d 20 2100 54.3 3.59 0.155 0.179 0.594

avp425u 20 2100 52.5 3.57 0.161 0.189 0.553

avp426d 10 1209 54.1 3.76 0.362 0.315 0.289

avp426u 10 1209 50.9 3.74 0.354 0.311 0.284

avp427d 5 502 54.1 4.27 0.731 0.421 0.121

(continued on next page)
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Table B.2: (continued)

H θ σ v v∗

drop stn (m) (◦) (S m−1) (m s−1) (m s−1) γ

avp427u 5 502 52 4.22 0.73 0.413 0.119

avp428d 10 1173 54.7 3.79 0.397 0.358 0.269

avp428u 10 1173 53.2 3.76 0.408 0.36 0.261

avp429d 5 578 53.2 4.20 0.759 0.485 0.139

avp429u 5 578 50.8 4.14 0.758 0.481 0.136
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Figure B.1: Profile data from avp403d.
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Figure B.2: Profile data from avp405d.
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Figure B.3: Profile data from avp406d.
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Figure B.4: Profile data from avp407d.
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Figure B.5: Profile data from avp408d.
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Figure B.6: Profile data from avp409d.
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Figure B.7: Profile data from avp410d.
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Figure B.8: Profile data from avp411d.
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Figure B.9: Profile data from avp412d.
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Figure B.10: Profile data from avp413d.
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Figure B.11: Profile data from avp414d.
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Figure B.12: Profile data from avp415d.



155

0 5 10 15 20 25 30

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Temperature (◦C)

P
re

ss
ur

e 
(d

b)
Station 20, AVP416   1992.Jul.18 17:08

33.5 34 34.5 35 35.5 36 36.5 37
Salinity (psu)

21 22 23 24 25 26 27 28
σ t (kg/m3 - 1000)

−1.5 −1 −0.5 0 0.5 1 1.5
Velocity (m/s: r=u2, b=v2)

Figure B.13: Profile data from avp416d.
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Figure B.14: Profile data from avp417d.
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Figure B.15: Profile data from avp418d.
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Figure B.16: Profile data from avp419d.
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Figure B.17: Profile data from avp420d.
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Figure B.18: Profile data from avp421d.
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Figure B.19: Profile data from avp422d.
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Figure B.20: Profile data from avp423d.
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Figure B.21: Profile data from avp424d.
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Figure B.22: Profile data from avp425d.
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Figure B.23: Profile data from avp426d.
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Figure B.24: Profile data from avp427d.
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Figure B.25: Profile data from avp428d.
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Figure B.26: Profile data from avp429d.
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Figure B.27: Profile data from avp430d.
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